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Abstract — Software vulnerabilities, particularly memory corruption, are significant sources of security breaches.
Traditional security measures like data-execution prevention, address space layout randomization, control-flow integ-
rity, code-pointer integrity/separation, and data-flow integrity provide insufficient protection or lead to considerable
performance degradation. This research introduces, develops, and scrutinizes FastDIM, a novel approach designed to
safeguarding user applications from memory corruption threats. FastDIM encompasses an low-level virtual machine
(LLVM) instrumentation mechanism and a distinct memory monitoring module. This system modifies applications in
user space into a more secure variant, proactively reporting vital memory operations to a memory monitoring compon-
ent within the kernel to ensure data integrity. Distinctive features of FastDIM compared to prior methodologies are
twofold: FastDIM’s integrated out-of-band monitoring system that secures both control-flow and non-control data
within program memory, and the creation of a dedicated shared memory space to enhance monitoring efficiency.
Testing a prototype of FastDIM with a broad spectrum of real-life applications and standard benchmarks indicates
that FastDIM’s runtime overhead is acceptable, at 4.4% for the SPEC CPU 2017 benchmarks, while providing the
defense against memory corruption attacks.

Keywords — Memory corruption, Control-flow integrity, Data-flow integrity, Compiler, Software hardening.
Citation — Jian Huang, Yanbo Li, and Hao Han, “Design, realization, and evaluation of FastDIM to prevent
memory corruption attacks,” Chinese Journal of Electronics, vol. 34, no. 4, pp. 1233-1246, 2025. doi: 10.23919/cje.2024.
00.218.

I. Introduction

Within the domain of software security, memory corrup-
tion lays the foundation for numerous vulnerabilities and
attacks that undermine contemporary computing environ-
ments. Memory corruption emerges as a persistent issue,
particularly in low-level, memory-unsafe programming
languages like C/C++. Attackers leveraging this flaw
can illicitly modify data in memory, leading to unautho-
rized code execution, elevation of privileges, data breach-
es, and more. Such software flaws are central to a multi-
tude of vulnerabilities and actual attacks. Addressing the
intricacies of memory corruption demands advanced pro-
tective strategies, especially as adversaries continually re-
fine their methods to exploit these weaknesses.

Memory corruption attacks fall into two primary
classifications: control-oriented and data-oriented. Con-
trol-oriented attacks aim at memory objects linked to
control transfers, including return addresses, function

pointers, and pointers within virtual function tables. An
intruder altering these specific data points can redirect or
alter the control flow of a program, leading to the execu-
tion of unauthorized code. Conversely, data-oriented at-
tacks, which focus on data not related to control, repre-
sent an evolving security challenge that has gained prom-
inence recently.

Control-oriented cyberattacks initially exploited code
injection techniques, but more recent strategies have em-
ployed return-oriented programming (ROP) [1] and just-
in-time (JIT) [2] methods to execute code-reuse attacks.
Various defensive mechanisms have been introduced to
counteract control-flow hijacking, showing a trend to-
wards enhanced practicality and efficiency. Such defenses
encompass data-execution prevention [3], strategies for
memory randomization including address space layout
randomization (ASLR) [4], data space randomization [5],
the insertion of randomized no-operation (NOP) instruc-
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tions [6], and timely address space randomization [7].
Moreover, control-flow integrity (CFI) along with its var-
ious adaptations [8], as well as measures for safeguard-
ing code pointers like cryptographically enforced control
flow integrity (CCFI) [9] and code-pointer integrity/sep-
aration (CPI/CPS) [10], are notable examples of these
protective measures.

While control-flow attacks are significant, they are
not the sole adverse effects stemming from memory cor-
ruption vulnerabilities. Non-control data, which is more
prevalent in a program’s memory, can also be a target
for attackers, who might modify it to elevate privileges
or circumvent security measures. The initial examples of
non-control-flow (or data-oriented) attacks were intro-
duced by [11], [12], highlighting that these attacks neces-
sitate specific knowledge about the application’s seman-
tics, challenging even for advanced attackers. The true
potential of data-oriented attacks was later unveiled by
Hu et al. [13], who devised a novel data-flow stitching ap-
proach, enabling the systematic creation of data-oriented
attacks without an in-depth understanding of program
semantics. As data-oriented attacks do not alter control
flows, they evade detection by leading control-flow pro-
tection mechanisms. To counter such attacks, methods
like dynamic taint analysis [14], which tracks suspicious
data flows and is often employed in malware detection
and vulnerability identification, were adapted for real-
time use. Data-flow integrity (DFI) [12] is another strate-
gy, ensuring that data flows during execution do not
stray from a pre-determined data-flow graph established
via static analysis. Nonetheless, these defensive strate-
gies can lead to significant overhead if specialized hard-
ware support is unavailable.

Furthermore, most existing defenses against memory
corruption attacks use inlined reference monitors (IRM),
where monitor code is inlined into target programs.
While this enables program-specific optimizations, one
problem is that monitor code cannot run in parallel with
target programs; this can cause a large performance over-
head when the number of checks inlined into the pro-
gram is significant.

To tackle these issues associated with memory cor-
ruption, we unveil FastDIM, an innovative framework
engineered to enhance program defenses against memory
corruption threats. FastDIM is comprised of two princi-
pal elements: an low-level virtual machine (LLVM)-based
instrumentation toolchain and an out-of-band memory
observer. The toolchain involves the collection of tools
and the instrumentation process integrated into the
LLVM compiler framework, which inserts security checks
and monitoring capabilities into the code. A memory
monitor, functioning as a kernel module, safeguards the
integrity of these objects by keeping a shadow copy. If
any discrepancies or unusual sequences of operations are
detected, FastDIM intervenes by halting the program to
avert potential memory corruption attacks. Notably, ear-
lier CFTI strategies utilized a comparable shadow stack to

impose dynamic constraints on function returns. How-
ever, due to the significant overhead, the shadow stack
was later discarded in favor of enhanced performance.
FastDIM addresses this challenge by employing on-chip
random access memory (OCRAM) to create shared mem-
ory, enabling rapid shadow copying and verification.
This design allows the monitoring code to operate in par-
allel with the target programs, significantly improving ef-
ficiency compared to traditional inlined reference moni-
tor designs. Additionally, we implement several optimiza-
tion techniques, including loop-invariant code motion
and caching strategies.

FastDIM underwent rigorous testing using the run-
time intrusion prevention evaluator (RIPE), standard
performance evaluation corporation (SPEC) central pro-
cessing unit (CPU) 2017 benchmarks, and real-world ap-
plications with known vulnerabilities. The evaluations
demonstrated that FastDIM effectively identified all at-
tack attempts within the RIPE benchmarks and those
targeting real-world susceptible applications. In terms of
runtime performance, FastDIM demonstrated a geomet-
ric mean overhead of 4.4% and reached a maximum over-
head of 27% on the SPEC CPU 2017 benchmarks.

In conclusion, our research presents the following
key contributions:

e We have crafted an out-of-band memory observer
that addresses both control- and data-oriented attacks on
memory integrity. We have also created an LLVM in-
strumentation tool to allow applications to be protected
by the monitor.

e Our development of OCRAM-based shared mem-
ory facilitates fast communication between the memory
observer and the programs it safeguards. This, along
with various optimization techniques, substantially low-
ers the monitoring overhead.

e A prototype of FastDIM has been developed and
assessed using benchmarks and real-world scenarios on
the development board with model IMX6DQ6DSL. The
outcomes of these evaluations indicate that our method
effectively identifies memory corruption attacks while
maintaining a manageable overhead.

The following parts of this paper are structured as
follows: Section II explores prior research, highlighting
established methodologies and their constraints. Section
IIT describes the design principles of FastDIM, with Sec-
tion IV describing a detailed implementation. Section V
offers an extensive assessment of FastDIM’s performance.
Finally, Section VI summarizes our insights and outlines
prospective research avenues.

II. Related Work and Background

1. Related work

Control-flow attacks and defenses CFI is recognized as
a systematic security approach [8] to counter control-flow
attacks. Notably, CFI has been integrated within Clang
and Visual Studio [15], respectively. Essentially, CFI ob-
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structs an attacker’s ability to alter control flows at will
during a program’s execution, maintaining adherence to
a predefined control-flow graph while the program runs.
Over decades, original CFI has been improved in various
ways. For example, compact control flow integrity and
randomization [16] enhances performance by randomiz-
ing legitimate transfer target layouts. Opaque CFI [17] is
designed so that even if attackers analyze the modified
code, they can’t gain insights into the legitimate control
jump targets. A CFI method for binaries (bin-CFI) [18]
offers a CFI implementation relying solely on a stripped
binary without needing the program’s source code. Mod-
ular CFI [19] applies CFI principles to programs com-
posed of distinct compilation units, enhancing modular
security.

Besides, hardware capabilities [20]-[28] have been
leveraged to enhance the effectiveness of CFI. Control
flow integrity montior (CFIMon) [20] utilizes the branch
tracing features of the processor to gather transfer tar-
gets selected by the application, verifying these against a
points-to-analysis outcome. kBouncer proposed in [21] in-
tervenes during system call executions, utilizing the last
branch record (LBR) available on Intel processors to
identify transfer target patterns indicative of an ROP at-
tack. ROPecker proposed in [22] also intervenes at criti-
cal security checkpoints, reviewing the LBR while inte-
grating past branch choice reviews with a forward-look-
ing analysis. Address-based CFI [24] presents a hardware-
assisted fine-grained CFI design that reformulates labels
as the lower bits of addresses. Slot-based CFI [27] pro-
poses a new fine-grained forward CFI implementation by
combining existing coarse-grained instruction set archi-
tecture extensions with software modifications.

Non-control attacks and defenses The initial de-
monstrations of data-oriented attacks [29] introduced a
classification where attacks focusing solely on crucial
data structures were labeled as pure data attacks. Subse-
quent studies [11] delved deeply into this type of assault,
uncovering their profound effects on practical applica-
tions. Identifying susceptible critical data within source
code for these exploits traditionally demanded manual
labor. However, an innovative approach by research [13]
enabled the automated generation of data-oriented ex-
ploits. Research [30] introduced a more nuanced tech-
nique for crafting such exploits, using specific vulnerable
functions to develop Turing-complete challenges to CFL
Additionally, data-oriented programming [31] has en-
hanced the depth of non-control data attacks by identify-
ing data-oriented gadgets within the software, enriching
the potential for such attacks.

Numerous defensive strategies have been developed
to thwart data-oriented attacks. Data-flow integrity, for
instance, aims to ensure that a program’s data flow re-
mains consistent with a predefined data-flow graph [12],
[32]-[35]. Similar to CFI, DFI has also been accelerated
by hardware features. For example, runtime scope type
integrity [36] leverages ARM Pointer Authentication to

enforce both code and data pointers to conform to the
original programmer’s intent. Alternatively, some defens-
es focus on enhancing memory safety. For example, Soft-
bound [37] introduces memory safety to the inherently
unsafe C language through bound checking and fat
pointers. Compiler enforced temporal safety [38] ad-
vances this approach by specifically targeting the preven-
tion of memory errors, while CCured (a program trans-
formation system that adds type safety guarantees to ex-
isting C programs) [39] introduces a type-safe system
that can statically identify potential memory errors and
apply dynamic bound checks to mitigate them. However,
the significant performance overhead associated with
these methods can hinder their practical application.

2. Motivating examples

Figure 1 shows an instance of a program with vulnerabil-
ities that are challenging for the aforementioned solutions
to secure effectively. In this example, the readPacket()
function (line 6) has a buffer overflow vulnerability. It
may overwrite adjacent memory of packet and change
the value of authenticated from 0 to 1 intentionally. In
that case, the attacker can bypass the authentication
branch (line 7) without providing a valid credential.
While path-sensitive analysis [40] might resolve this par-
ticular issue, the set pertaining to any control-flow trans-
fer must be precisely approximated. Any errors in this
approximation could result in the program malfunction-
ing even when protective measures are in place.

char packet[ 1;

void (*handler) (char *);

while ('authenticated) {
readPacket (packet) ; //vulnerable function
if (Auth (packet)) {

©

| eint server() {

2 int authenticated = 0;
3

4

7%

8 authenticated = 1;

9 if (getUser (packet) == ADMIN) {
10 handler = priv;
11 }else{

12 handler = unpriv;
13 }

14 }

15 }

16 if (authenticated == 1)

17 handler (packet) ;

18 i

19 L}

Figure 1 A demonstration showing the impact of non-control data.

Figure 2 showcases a scenario derived from a known
real-world vulnerability (from common vulnerabilities
and exposures, CVE-2016-2059) involving a linked list of
compound structures, each embedded with a function
pointer. In this example, a susceptible function (line 18)
interacts with a structure, potentially removing some
structures from the list and deallocating them from the
heap. Consequently, when the function pointer func is
accessed at line 21, there’s a risk it could reference a
freed location on the heap or, worse, an address manipu-
lated by an attacker post-deallocation of the compound
structure. This situation underscores the difficulty static
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analysis faces in accurately determining the legitimacy of
a function pointer’s content at a specific moment in the
program’s execution.

1 a@struct compound {

2 struct list_head list;

3 H

4 int (*func) (void *data) ;

5 Ll}//this structure contains a function pointer

6 //and is attached to a list

7

8 sint foo(){

© H

10 struct compound mylist;

11 INIT LIST HEAD(&mylist.list);

12 struct compound *tmp;

13 H

14 tmp= (struct compound *)malloc(sizeof (struct compound)) ;
15 tmp->func = &valid func;

16 list_add(&(tmp->list), &(mylist.list));

17

18 vulnerable (tmp) ;//this function may free tmp from the heap
19 H
20 if (tmp->func)
21 tmp->func (data) ;
22 /*this function pointer may point to an invalid address
23 forged by attacker*/

24 '}

Figure 2 A case study demonstrating how use-after-free vulnerabili-
ties can circumvent conventional CFI defenses.

3. Threat models

User programs are compiled using a specialized LLVM
toolchain and are under the surveillance of our memory
observer. While these applications are generally secure,
they may contain vulnerabilities that could enable mem-
ory corruption by an attacker, who then aims to under-
mine the execution integrity and take control of the pro-
gram’s behavior. Echoing prior research, we postulate
that the attacker is restricted to corrupting writable
memory areas, meaning they cannot alter read-only sec-
tions, such as the executable code. Applications not com-
piled with our toolchain are considered unreliable and
are not allowed to execute without restrictions. Conse-

quently, we exclude the possibility that malware under

=
1

the attacker’s command can execute any operations with-
in the system. Employing code scanning and anti-virus
tools is advised to mitigate these risks.

Our trust is placed solely on the security of operat-
ing system kernels. Consistent with preceding research,
this paper does not account for physical intrusions, includ-
ing cold boot [41] attacks and bus monitoring [42], [43],
nor does it address denial of service (DoS) attacks or
cache side-channel exploits [44]-[47].

IIT. System Design

1. Overall architecture

FastDIM represents an integrated approach designed to
safeguard the integrity of security-sensitive memory ob-
jects, thereby thwarting data-oriented attacks. This pro-
tection is facilitated by compiler instrumentation coupled
with a memory observer. As depicted in Figure 3, the
tailored compiler inserts programs with a shared memo-
ry space between the application and the observer for
logging the activities of safeguarded memory objects.
This arrangement enables the observer to verify data in-
tegrity perpetually. The observer within the kernel space
keeps a shadow copy of the safeguarded memory objects,
synchronizing these copies with the program’s actions. If
a memory object is compromised through a vulnerabil-
ity, it will go unreported to the observer, causing dis-
crepancies between the shadow copy and the actual data.
Moreover, the observer will identify any abnormal re-
porting sequence that deviates from the program’s antici-
pated control flows, prompting program termination and
an alert signal.

Our methodology distinguishes itself from prior ef-
forts by offering a segregated environment for program
monitoring. A standalone observer, operational within the

/,"-_}4-

Compiler instrumentation

Shadow copy of
sensitive data

\\ Integrity

\ 4
=
/4

Report CFI &
DFI violations

User space

\\ monitoring /I

Kernel space

Shadow
copies
Lookup table

Figure 3 An overall system architecture of FastDIM.

Stats reporting
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kernel, is tasked with verifying data integrity. The use of
OCRAM as shared memory facilitates swift interaction
between the program and the observer. Individual pro-
grams, identified by their task identifier (tid), concurrent-
ly post messages to their designated shared memory ar-
eas. The observer accesses these messages from the shared
memory, ensuring the program’s operation remains un-
interrupted. Interaction with the shared memory is re-
stricted to well-defined application programming inter-
faces (APIs), with any unauthorized attempts being in-
tercepted. To ensure security, a message authentication
code (MAC) verifies each message, preventing programs
from sending unauthorized messages to shared memory
regions not assigned to them. Subsequent sections will
delve into the specifics of each FastDIM component.

2. Compiler-time instrumentation

The objective of the instrumentation is to integrate re-
porting instructions into applications via our specialized
compiler. Initially, this compiler is tasked with pinpoint-
ing all the memory elements that require protection. In
this context, sensitive information encompasses elements
such as function pointers, virtual function tables (vptr),
return addresses, and additional non-control data that
users have marked for attention.

e Return addresses. The return address, a well-
known focal point for control-flow attack vectors, is
stored on the stack each time a function is invoked. If
the return address has been compromised, it provides an
avenue for attackers to execute chosen code, such as in-
jected scripts or ROP gadgets. Despite the employment
of existing defense mechanisms like stack canaries,
ASLR, and Safestack can address this problem to some
extent, the latest research [48] reveals that more sophisti-
cated attacks can still bypass these measures. Therefore,
protecting return addresses continues to be a critical
component of our FastDIM.

e Function pointers. Function pointers are a vital
component of control-flow transfers, encapsulating the
address of functions. Typically situated in the stack,
heap, or various data segments, they play an essential
role in the functionality of programs. If an attacker man-
ages to tamper with a function pointer, they can manipu-
late the program’s control flow to divert to a specific lo-
cation when the program performs an indirect call via
that pointer.

e Vtables pointers. In C++, classes with virtual
functions, or those inheriting from such classes, utilize a
virtual function table (vtable) during execution. This
vtable serves as a look-up table containing pointers to
the code of each virtual function within the class, facili-
tating dynamic dispatch. While the vtable is located in
read-only memory segments, the pointer to the vtable’s
base (commonly known as vptr) resides in a writable
memory area. An attacker can modify the program’s con-
trol flow by modifying this vptr, thereby affecting the
behavior of C++ programs.

e Annotated non-control data. As shown in Figure 1,
data that does not control program flow can still be piv-
otal. For instance, altering parameters in crucial system
calls (e.g., setuid, execute) could result in unauthorized
privilege elevation or execute unexpected program ac-
tions. Modifying data in memory, especially data de-
rived from configuration files, might enable the circum-
vention of built-in access controls in server applications.
Moreover, if data that influences decision-making is alter-
ed, an attacker could steer a program’s control flow to-
wards unintended pathways, potentially evading security
mechanisms. Identifying such critical non-control data
automatically remains a challenging issue, necessitating a
deep understanding of the program’s semantics, which is
beyond the scope of this discussion. Nonetheless, some
methodologies from prior research, such as [49], [50], offer
strategies for automatically detecting sensitive data.

Locating sensitive data in the program To identify
various types of sensitive data, we employ distinct strate-
gies. For example, a return address is typically identified
by a fixed offset from the stack’s frame pointer. Due to
optimizations like function inlining and leaf-function op-
timization, not all functions store their return addresses
on the stack. If the return addresses are not on the stack,
monitoring them is unnecessary, assuming that an at-
tacker cannot modify the registers directly. For locating
function pointers, we depend on the type information
provided by the compiler. For function pointers embed-
ded within complex data structures (such as structures,
arrays, or pointers to function pointers), we conduct a
recursive search through all fields of an aggregate type
and its subtypes. Special attention is required when a
function pointer undergoes casting to or from other
types, for instance, a void* type. We apply flow analysis
to track memory objects that are not initially identified
as function pointers but derived from or converted to
function pointers. Last, identifying vtable pointers is
done via the C++ application binary interface, using
naming conventions for virtual function calls to locate all
vtables and vptrs associated with each class object. For
sensitive non-control data, we use attribute annotations
(_attribute_ ((annotate(“sensitive”)))) in the source code
to mark them explicitly.

Verifying sensitive data Once FastDIM identifies
the relevant memory objects, the next step is to insert
the code of security reporting within the program. This
process involves monitoring all store instructions and
memory duplication operations, like memcpy, to notify
the observer, enabling the creation of a shadow copy of
the objects’ legitimate contents. Nonetheless, this ap-
proach encounters two practical challenges. First, deter-
mining the content of a pointer reference is complex. For
instance, program A utilizes memcpy (i8*<dest>, i8*<src>,
i32<len>) to copy an array of function pointers. Pro-
gram B uses the same function to duplicate structured
data containing a function pointer field. Relying solely
on memcpy’s provided data is inadequate. Therefore, we



1238

Chinese Journal of Electronics, vol. 34, no. 4

use backward analysis to ascertain the original pointer
type. Second, reporting the contents of memory objects
initialized within a function is straightforward. We can
insert reporting instructions right after the object initial-
ization. For memory objects initialized statically, we
place reporting instructions at the main function’s start,
ensuring the observer is informed of their correct values
prior to their initial use. However, how do we handle
memory objects initialized in libraries without a main
function? To solve this, we devise a helper function with
a distinct naming convention, avoiding the need for un-
stable link-time optimization (LTO) or cross-dynamic
shared object methods. This helper function encompasses
all necessary reporting instructions for memory objects
initialized within libraries. Upon the program’s launch,
we search for these helper functions in the libraries’ sym-
bol tables. If found, we dynamically invoke these func-
tions at the main function’s commencement. Section IV
delves deeper into the implementation specifics.

To maintain the integrity of sensitive data in a pro-
gram, it’s crucial to inform the observer for validation
checks whenever such data is utilized. In the case of non-
return data like function pointers, vptrs, and specially
annotated memory objects, FastDIM monitors every in-
struction that loads data, as these elements need to be
loaded into registers prior to their use. Reporting instruc-
tions are strategically placed just before each load in-
struction. Additionally, when memory is transferred from
one location to another, we integrate instructions before
the copy operations to verify the source’s integrity. For
return addresses, the reporting instructions are placed
prior to the ret instructions in functions that are unopti-
mized. It’s important to note that no additional instru-
mentation is required for sensitive data already present
in registers, as such data would have been verified when
loading into the registers.

Lifetime of sensitive data To mitigate the attack
shown in Figure 2, FastDIM monitors the lifespan of sen-
sitive data. Such data, when allocated on a function’s
stack, is eradicated once the function concludes. Fast-
DIM aids in this process by integrating reporting instruc-
tions prior to the function’s ret instruction. Similarly,
when deallocating a memory segment on the heap, Fast-
DIM dispatches an alert to the observer, who then ex-
punges the associated shadow copies. During a fork() sys-
tem call, which clones the memory pages of the parent
process for the child, it’s crucial to inform the observer
about the new memory locations. While both processes
initially seem to hold separate instances of sensitive data,
the copy-on-write (COW) mechanism delays the duplica-
tion of the parent’s memory pages until they are altered.
Therefore, FastDIM incorporates a post-fork reporting
instruction to signify the commencement of the sensitive
data’s new cycle within the child process.

3. Runtime integrity monitoring

The responsibilities of the observer encompass: 1) Over-

seeing the shared memory that facilitates communica-
tion across user and kernel spaces; 2) Confirming the le-
gitimacy of the actions on safeguarded data as reported
by the applications; 3) Executing appropriate measures
depending on operations; 4) Halting the execution of a
compromised program if an infringement is identified.

Figure 4 depicts how an OCRAM is utilized to con-
figure shared memory, incorporating several circular
buffers to speed up the data transfer process to the ob-
server. This shared memory is structured as a block ma-
trix, with each column of the matrix representing an in-
dividual circular buffer. Within these circular buffers,
each element is organized into a specific data structure,
detailed as follows:

tid, address, value, OP _STORE, MAC

tid, address, value, OP _LOAD, MAC
Msg 1= tid, address, _, OP_ PUSH, MAC
' tid, address, , OP_POP, MAC

tid, , parent’s tid, OP_FORK, MAC

tid, _, parent’s tid, OP_FREE, MAC

Each circular buffer is allocated to programs shar-
ing the same hash of their tid. When a program needs to
report an operation involving protected data, it inserts
an entity into its designated circular buffer. This ap-
proach permits various processes to interact with dis-
tinct circular buffers simultaneously. A locking mecha-
nism is employed to prevent race conditions when multi-
ple programs share a single circular buffer. Each entry
within the circular buffer includes a MAC. Initially, our
instrumentation tool injects additional code to acquire a
key from the observer when setting up the shared memory
for each program. This key is used to append a MAC to
every message sent to the shared memory. The observer,
possessing the corresponding key, verifies these messages.
Unique keys are assigned to different circular buffers,
preventing attackers without the correct key from ma-
nipulating the buffers. Furthermore, interaction with the
shared memory is restricted to specific APIs, with any
unauthorized attempts being intercepted. To circumvent
a scenario where a malfunctioning program could monop-
olize the shared memory, a timeout feature is in place,
ensuring that the memory is not locked indefinitely.

The protected program communicates with the ob-
server through six distinct operation types: OP__STORE,
OP_LOAD, OP_PUSH, OP_POP, OP_FORK, and
OP_FREE. For instance, to indicate the initialization or
modification of a function pointer, vtable pointer, or oth-
er non-control data, the program sends an OP_STORE
message, which includes the data’s address and content,
to the shared memory. The observer then creates a shad-
ow copy of this data in a specialized lookup table. When
dealing with return addresses, an OP__PUSH message is
dispatched to shared memory, prompting the observer to
replicate the return address in a shadow stack. Notably,
an OP__PUSH message contains only the address, unlike
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Figure 4 Circular buffers and look-up tables in shared memory (The FIFO in the figure represents a first in first out queue).

an OP__STORE message, which carries both address and
value. For usage of sensitive data, the program sends ei-
ther an OP_LOAD or OP_POP message to the shared
memory, signaling the observer to check data integrity.
Depending on the type of operation, the observer con-
sults the shadow lookup table for non-return data or the
shadow stack for return addresses. If the observer finds
that the shadow copy is missing or differs from the pro-
gram’s reported runtime value, a violation is flagged. In
the case of an OP_FORK message, the observer dupli-
cates all shadow copies from the parent to the child pro-
cess, safeguarding the sensitive data in the new process.
Lastly, an OP_FREE message triggers the observer to
eliminate any related shadow copies from the tables or
stacks, thwarting use-after-free vulnerabilities.

The observer operates a random access memory
(RAM) cache dedicated to a specific category of safe-
guarded memory objects. These objects are organized
using hash tables to enable O(1) search efficiency, al-
though the implementation nuances vary.

Shadow lookup table Function pointers are main-
tained in a two-tier lookup table. As illustrated in the left
part of Figure 5, a hash bucket contains the task ID, the
data address, the data’s value, and a timestamp. When-
ever a new message is written to the shared memory by
the program, the observer verifies the message and calcu-
lates the hash key using the task ID and data address in-
cluded in the message. Once the key is determined, the
observer interacts with the appropriate hash bucket de-
pending on the message type. For example, if the type is
OP_STORE, the observer will create a new bucket to
make a shadow copy of sensitive data given that no
match is found or update the data value of the existing
bucket in the table. If the message type is OP_LOAD,
the observer will compare the runtime value of sensitive
data to the stored shadow copy. The observer will issue a
violation if a mismatch or no bucket is found.

To enhance the efficiency of replicating or deleting
groups of shadow copies during task forking or exit, an

auxiliary task hash table is established, as depicted in
the right part of Figure 5. Within this table, keys are de-
rived solely from the task ID, and each hash bucket
holds a list of shadow copy references sharing that task
ID. Consequently, this structure enables the deletion of
obsolete entries or the duplication of entries from a par-
ent task to be executed as an O(1) operation.

Shadow stack Similar to the hash table for indi-
rect calls, the observer manages a shadow stack of each
process under monitoring in another hash table. A hash
key is generated from the task ID, and a hash bucket
holds the task ID along with a shadow stack that exclu-
sively contains return addresses. When a user-space pro-
gram (process) pushes a return address onto the stack,
the observer will do the same operation on the shadow
stack associated with that process. When a return ad-
dress is popped when a callee function returns to the
caller function, the observer will also pop the stored ad-
dress from the shadow stack and compare if the two ad-
dresses are equal. A return address violation will be
claimed if they are not equal, and the observer will take
subsequent actions. When a task exits, the module will
remove all remaining entries from the hash table. Unlike
the indirect call, deleting the task entries and their local
stacks is straightforward, and no auxiliary hash table is
needed.

4. Discussion

Security guarantees FastDIM ensures the integrity of
security-related memory elements such as return address-
es, function pointers, vtable pointers, and annotated sen-
sitive data (e.g., keys and configures), thereby thwarting
various memory corruption attacks. The common types
include buffer overflow in stack or heap, format string
vulnerability, use-after-free, and integer overflow. These
attacks are typically the cause of more advanced attacks
such as ROP attacks, JIT attacks, and code reuse at-
tacks. Moreover, FastDIM functions akin to an intrusion
detection system, identifying irregular sequences in the
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operations of protected data that deviate from a pro-
gram’s anticipated control flows.

FastDIM implements stringent measures to ensure
attackers cannot misuse shared memory to evade detec-
tion. It restricts the program’s interaction with shared
memory exclusively to predefined APIs. Any unautho-
rized access to shared memory outside these APIs is block-
ed because the OCRAM is not mapped to those unau-
thorized processes. Furthermore, each program receives a
unique key when initializing shared memory communica-
tion with the observer. This key is used to create a MAC
for every message sent to the shared memory, prevent-
ing attackers without the key from altering the circular
buffers undetected.

Limitations Our methodology prioritizes runtime
efficiency by allowing programs to run without pausing
for integrity verification. This approach might briefly en-
able an attacker to execute exploits before the observer
detects memory corruption. Nonetheless, the window for
such exploitation is minimal, given that the observer op-
erates on a dedicated core, continuously monitoring mes-
sages from circular buffers in an uninterrupted round-
robin sequence. Consequently, an attacker’s attempt to
flood its circular buffer won’t hinder the observer’s oper-
ation or lessen the likelihood of detection. To minimize
the potential for DoS attacks, future enhancements will
focus on implementing access controls for protected pro-
grams, such as establishing a whitelist and setting limita-
tions on the rate of message writing.

A potential issue is shared memory, which acts as a
system bottleneck. To manage the shared memory re-
gion’s performance, FastDIM uses an OCRAM-based

1

" List of indirect ¢
entries of a task in the

{ Task hash table useful for |
locating a task structure in |
the CFI kernel module, i

1 used in resource recycle

when a task exits.

/" Tasks whose indirect calls
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removed from the indirect

| call hash table i

all ; N

shared memory with circular buffers and a locking mech-
anism to prevent race conditions when multiple pro-
grams attempt to write simultaneously. Circular buffers
help reduce collisions by ensuring that each program has
dedicated space, while the locking mechanism prevents
buffer overflow and ensures orderly access. For environ-
ments with many concurrent processes, scalability is fur-
ther enhanced by adjusting buffer sizes based on ob-
served usage patterns. Regarding adversarial attacks, the
shared memory region is fortified by exclusive access
through specific APIs and message authentication codes,
as mentioned above. If the platform has hardware sup-
port such as trusted execution environment, shared mem-
ory can be physically isolated or set up with dedicated
access controls that enforce stronger separation.

For further robustness, we are exploring techniques
like rate-limiting for message writes and adding quotas
per process to prevent DoS scenarios within shared mem-
ory. Additionally, our further work will extend our
framework to monitor shared memory usage patterns ac-
tively, triggering alerts if anomalous behaviors indicative
of adversarial actions are detected.

IV. Implementation

The FastDIM framework has been designed with scala-
bility and portability in mind. Although the current im-
plementation is developed within LLVM 3.9, the memo-
ry observer component is integrated into the Linux ker-
nel. It can be adapted across different operating systems,
compilers, and hardware architectures. That is because
FastDIM is primarily designed for portable operating
system interface (POSIX)-compliant operating systems.
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Its use of LLVM for instrumentation ensures compatibili-
ty with any operating system that supports the LLVM
toolchain. The out-of-band monitoring framework can al-
so be ported to other Unix-like systems with kernel-level
modules, as FastDIM primarily relies on generic kernel-
space memory operations. Later in Section V, FastDIM
has been evaluated on x86 and ARM architectures.

1. LLVM transform pass

Within the LLVM compiler structure, a program’s source
code is initially transformed by the front end (utilizing
Clang/Clang++ for C/C++ languages) into an interme-
diate representation (IR). Subsequent to this, a series of
LLVM passes are applied for optimization purposes. Fol-
lowing these optimizations, the back end is responsible
for producing assembly code tailored to particular plat-
forms, utilizing the refined IR. To ensure compatibility
and performance, FastDIM conducts its instrumentation
at both the IR and assembly stages. Instrumentation
concerning non-return data occurs at the IR stage, while
return address instrumentation is conducted at the as-
sembly stage, allowing for targeted protection decisions
post-optimization.

2. Support of libraries without LTO

Traditionally, L'TO is utilized to facilitate the exchange
of information between modules during the linking phase,
enabling the sharing of target data from libraries to the
program. However, leveraging LTO in LLVM typically
requires substituting system files like ld, ar, and ranlib
with versions that support the gold plugin. Moreover,
both the program and its associated libraries need to be
compiled using L'TO. To circumvent these limitations,
we devised a method allowing each module to be com-
piled separately while still supporting modularity. This
approach involves embedding a helper function when-
ever target data is detected. While not altering the li-
brary’s core functionality, these functions offer a straight-
forward method for the program to communicate with
the monitor. Upon the program’s initiation or when li-
braries are dynamically brought in using dlopen, the pro-
gram is set up to inspect the symbol tables of the linked
libraries for our custom helper functions. Detected helper
functions are then executed right after the library loads.
This technique enables the static incorporation of sensi-
tive data details into the code and the dynamic transfer
of this data across modules upon execution, all without
the necessity for LTO.

3. Communication between application and
monitor

An OCRAM-based shared memory is established be-
tween the applications and the monitor, which enables si-
multaneous program execution and integrity verification.
Specifically, the monitor allocates a segment of OCRAM
memory within the kernel. User applications are config-
ured to access the monitor device (e.g., /dev/monitor)
and link the designated ring buffer (see Figure 4) to their

virtual address space, utilizing their tid. When transmit-
ting an operation message to the monitor, the program
puts the message into the ring buffer, functioning as a
producer. Concurrently, the monitor, serving as a con-
sumer, retrieves messages from the ring buffer. This
shared memory arrangement allows both entities to func-
tion autonomously, eliminating the need for context
switching. This setup considerably diminishes the laten-
cy associated with integrity checks for user applications.
However, it is worth noting a minor drawback: a slight
delay exists between the usage of sensitive data and its
integrity verification. To minimize this lag, the verifica-
tion point is strategically positioned before the actual
load instructions. Experimentation has shown this delay
to be negligible.

To minimize overhead, OCRAM is employed as the
shared memory in specific hardware setups, like the
i.MX6 processor. This OCRAM, integrated into the mem-
ory address space, can be directly accessed through the
advanced extensible interface bus, bypassing the need for
a memory management unit required for regular RAM
access. This approach substantially lowers run-time over-
head. The memory observer efficiently polls data from
this shared memory, ensuring prompt processing of write
operations. A challenge with using OCRAM is the risk of
data clashes or corruption when multiple cores attempt
simultaneous writes to the OCRAM. To counteract this,
circular buffers are utilized to decrease collision chances,
and a locking mechanism is employed to secure OCRAM
segments during access by any core. This polling method,
while quicker than interrupt-driven approaches, does
have a trade-off in terms of consuming certain CPU re-
sources. Detailed results from this approach are dis-
cussed in the subsequent section.

4. Further optimization

We noticed that certain programs access function point-
ers or vptrs repetitively within loops, even though the
pointers’ values seldom change. Thus, it is inefficient to
verify the integrity of these pointers during each itera-
tion of the loop. Leveraging this insight, we applied a
compiler strategy known as hoisting to execute loop-in-
variant code movement. When a function pointer is iden-
tified as invariant within a loop, our technique relocates
the integrity verification code outside the loop, ensuring
the check is executed just once per loop execution. For
cases where a function pointer’s value is altered within
the loop, we introduced a caching mechanism to prevent
redundant checks. This cache stores all data written to
the shared memory in an additional buffer. If a value is
reused, the system first verifies its presence in the cache.
If found, it bypasses notifying the integrity monitor for a
new check (i.e., writing the runtime value to the shared
memory with operator type OP_LOAD), thereby reduc-
ing the frequency of shared memory write operations. This
approach considerably decreases the number of shared
memory write activities.



1242

Chinese Journal of Electronics, vol. 34, no. 4

V. Evaluation

We conducted a series of detailed experiments to assess
our prototype, with the objective of addressing these in-
quiries:

(Q1) Correctness Does our security mechanism ad-
versely impact the intended operations of the programs?

(Q2) Effectiveness Does our prototype successfully
detect memory corruption attacks targeting return ad-
dresses, vtable pointers, function pointers, and other
non-control data types?

(Q3) Efficiency What is the extent of performance
overhead that FastDIM introduces to the protection
process?

1. Performance on benchmarks

SPEC CPU 2017 (Q1&Q3) SPEC CPU 2017 [51] has a
set of programs and additional commands/scripts for
benchmarking. Each program was compiled using Clang/
LLVM 3.9 and tested on an Ubuntu 14.04.5 system with
an Xeon (R) CPU E5-1620 and 16 GB of RAM. It should
be noted that Clang/LLVM 3.9 is the latest stable ver-

sion as this work began. Since the LLVM is backward
compatible, the toolchain can be easily ported to the lat-
est version (e.g., LLVM 10).

We leverage the runcpu command to validate the
correctness (Q1) of the generated executables. Such a
command will set up all of the benchmarks using the test
workload, run them, and verify whether we get correct
answers. The results show that all the hardened pro-
grams passed the correctness tests. Table 1 presents the
overhead of running the SPEC CPU 2017 benchmarks.
The “KLoc” column in the table indicates the bench-
mark’s code size in thousands of lines. The “Original” col-
umn records the average execution time in seconds across
three iterations of the reference workload. To apply Fast-
DIM’s protection, we altered the CMake files to include
our LLVM pass (noted in LVM_MODULE_PATH) and
library (in link_ directories) and modified the CFLAGS,
CXXFLAGS, and LDFLAGS. The table’s fourth column
details the overhead when FastDIM secures only func-
tion pointers, and the fifth column displays the over-
head for protecting all specified target types.

Table 1 Performance cost of SEPC CPU2017 benchmarks (n/a: not available)

Benchmark Measured performance Reported performance
Programs Original (s) KLoc Ours Ours (FP) wCFI Lockdown CCFI binCFI
557.xz_r 391+ 17 33 +3.6% +3.3% n/a n/a n/a n/a
541.leela_r 491+1 21 +8.3% +0.9% n/a n/a n/a n/a
531.deepsjeng_r 323+3 10 +0.3% +0.7% n/a n/a n/a n/a
525.x264_r 350+ 1 96 +10.5% +6.2% n/a n/a n/a n/a
523.xalancbmk_ r 375+ 3 520 +29.6% +15.3% +10.3% +118% +170% n/a
520.omnetpp_r 489 + 4 134 +32.6% +21.3% +6.7% n/a n/a +45%
505.mcf_r 395+ 6 3 +1.8% +0.1% +4.0% +2.0% +10% 0
502.gcc_r 315+ 3 1304 +14.5% +8.9% +6.1% +50% n/a +4.5%
500.perlbench_r 488 £5 362 +26.8% +21.9% +8.2% +150% n/a +12%
544.nab_r 457+ 0 24 +0.4% +0.4% n/a n/a n/a n/a
538.imagick_r 556 + 1 259 +0.2% +0.5% n/a n/a n/a n/a
519.lbm_r 274+ 3 1 +1.4% +0.1% —0.2% +2.0% n/a —2.5%
511.povray_r 540 +4 170 +27.3% +27.4% +11.3% +90% n/a +37%
510.parest_r 42143 427 +19.9% +3.1% n/a n/a n/a n/a
508.namd_ r 282+5 8 +1.2% +1.4% —0.3% +3.0% n/a —2%
Geo.Mean 400 57 +4.4% +2.1% +4.0% +20% +45% +8.5%

The outcomes indicate that FastDIM introduces an
average overhead of 2.1% when safeguarding only func-
tion pointers and 4.4% when protecting all designated
targets across the 15 SPEC CPU 2017 benchmarks, with
the highest overhead being 32.6% on 520.omnetpp_ 1. It’s
acknowledged that variances in overhead among differ-
ent programs are expected, as seen with cutting-edge so-
lutions, influenced by the quantity and utilization of pro-
tected memory objects within the program. For an equi-
table evaluation, the geometric mean is utilized to com-
pare FastDIM with other methods: virtual-table verifica-

tion (VTV) at 9.6%, per-input control-flow integrity
(7wCFI) at 3.3%, modular control flow integrity (MCFT)
[19] at 2.9%, practical context-sensitive CFI (PathAr-
mor) at 3.0%, dynamic control-flow integrity method
(Lockdown) at 20%, CCFI [9] at 45%, ROPecker [22] at
2.6%, bin-CFI [18] at 8.5%, path-sensitive variation of
CFI (PITTYPAT) [40] at 12.7%, DFI [12] at 200%, key
property based DFI (KPDFI) [34] at 9.53%, against
FastDIM (ours) at 4.4%, and FastDIM with function
pointer (FP) only at 2.1%. Note that the reported per-
formance was cited from the survey [52] with SEPC CPU
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2006. We did not compare our approach with hardware-
based solutions.

Academic example (Q1&Q2) For unit tests, we use
an example in the work [53] to demonstrate the capabili-
ty of FastDIM of protecting user-annotated sensitive da-
ta. As shown in Figure 6, the program takes a username
and a text input from the user, greets the user with the
greeter function, initializes a key, and encrypts the text
with the key. This program has a format-string vulnera-
bility in the greeter function, which could allow an at-
tacker to take over the program and modify the key. The
global key is the sensitive data, so we marked it using a
LLVM attribute. By applying FastDIM, we successfully
protect the integrity of the encryption keys.

char _ attribute_ ((annotate("sensitive"))) *key;
char *ciphertext;
unsigned int i;

printf (str); printf (", welcomes!\n");

- oUW N

TVOld greeter (char *str) ({

}

9 Hvoid initkey (int sz) {

10 key = (char *) (malloc (sz)):;
11 // init the key randomly; code omitted
12 for (i=0; i<sz; i++) keyl[il= ...;

13 L}

15 Hvoid encrypt (char *plaintext, int sz) {

16 ciphertext = (char *) (malloc (sz)):
17 for (i=0; i<sz; i++)
18 ciphertext[i]=plaintext[i] * key[i];

19 L}

21 Hvoid main () {

22 char username [ 1, text][ 1:
23 printf ("Enter username: ");
24 scanf ("%19s" ,username) ;
25 greeter (username) ;
6 printf("Enter plaintext: ");
7 scanf ("%1023s",text) ;

28 initkey(strlen(text));
29 encrypt (text, strlen(text));
1

Figure 6 Demonstration of user annotation to prevent data-orient-
ed attacks.

RIPE benchmark (Q2) The RIPE benchmark [54]
encompasses various vulnerable points, such as function
pointers and return addresses located in the stack, heap,
.bss, and .data segments, alongside numerous attack sce-
narios. We applied FastDIM to the RIPE benchmark, a
comprehensive C program designed to simulate diverse
attack methodologies through buffer overflows in differ-
ent memory segments (stack, heap, .bss, and .data seg-
ments). By default, RIPE is compiled for 32-bit systems
using the -m32 flag. Our testing environment was an
x86_ 32 Ubuntu 16.04 virtual machine. The benchmark
explores 3840 attack permutations, with 83 initially suc-
cessful, 767 unsuccessful, and 2990 deemed non-feasible.
Under FastDIM’s shield, all previously successful at-
tacks were effectively intercepted.

2. Performance on real-world programs

TORQUE resource manager (Q2) Terascale open-source

resource and queue manager (TORQUE) [55] serves as a
distributed resource manager, orchestrating batch jobs
and compute nodes within high-performance computing
clusters. It was identified that TORQUE resource man-
ager versions 2.5.x to 2.5.13 are susceptible to a stack-
based buffer overflow vulnerability, as highlighted in
CVE-2014-8729 and CVE-2014-8787. In our evaluation,
we aimed to ascertain whether FastDIM could thwart at-
tacks leveraging these vulnerabilities. We also employed
two security enhancements from Clang/LLVM, using the
compile options “-fsanitize=safe-stack” and “-fsanitize=
cfi”. However, simply compiling TORQUE with these op-
tions led to executable failures, with crashes attributed
to illegal instructions triggered by CFI checks—possibly
due to CFI misidentifying legitimate function pointer
calls as indirect call breaches, causing the program
counter to jump to an invalid operation. Conversely,
FastDIM did not encounter this issue, and the TORQUE
executables modified by FastDIM were capable of execut-
ing tasks such as job submission, queuing, dispatching,
and deletion without any hitches. To verify FastDIM’s
effectiveness, we executed an overflow attack using a
Python script (test_overflow.py) that dispatches a trans-
mission control protocol (TCP) packet with a 148-byte
payload, inducing a buffer overflow in the TORQUE
server (pbs_server) that crashes the application. Fast-
DIM successfully identified and countered this assault.

Null HTTPd (Q2) Null HTTPd [56] is a Linux-
based multi-threaded web server that was found to have
a remotely exploitable heap overflow vulnerability. This
vulnerability arises when an attacker supplies a negative
length to the server, influencing the allocated size for the
read buffer and causing a heap overflow. This flaw per-
mits an attacker to overwrite memory locations arbitrari-
ly via the free() function, as outlined in CVE-2002-1496
[56]. The risk involves corrupting the CGI-BIN configu-
ration viariable stored in memory, which stores the direc-
tory path of executable programs processed during HTTP
request handling. Consequently, by altering this configu-
ration string, an attacker gains the capability to execute
arbitrary code surreptitiously.

In the main.h file of the program, we marked the
string variable CONFIG config as sensitive by using the
_attribute_ ((annotate(“sensitive”))) annotation. After
integrating FastDIM to secure this program, the data at-
tack targeting this sensitive information was effectively
thwarted.

Apache HTTP server (Q3) Our prototype was fur-
ther tested on Apache HTTP server version 2.4.27, uti-
lizing the integrated ApacheBench (ab) tool for assess-
ment. This evaluation took place on an x86 Ubuntu
14.04.5 virtual machine equipped with 4 cores and 4 GB
of RAM, where we initiated the Apache server using the
subsequent command line:

apachectl -f /local-path/conf/httpd.conf
On the host system, equipped with a Xeon(R) CPU
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E5-1620 and 16 GB of RAM, we executed the bench-

mark using this command line:

ab — n5000 — ¢1000http : //127.0.0.0 : 80/

This command dispatches 5000 HTTP GET re-
quests to the Apache server on the virtual machine, han-
dling as many as 1000 requests simultaneously. The pro-
cessing time for each request averaged around 128 ms,
with an overall data transfer rate of approximately 1798
KB/s. Table 2 presents a comparative analysis across ten
iterations. On average, FastDIM with function pointer-
only protection and FastDIM with full protection result-
ed in an overhead of 12%—24% and 12%-39%, respective-
ly, on the Apache HTTP server.

Table 2 Performance outcomes on Apache HTTP server

Average Longest Transfer
> Total .
Method connection time (s) connection rate
time (ms) time (ms) (kpbs)
Original
FastDIM 66.69 0.84 808.69 1798.43
FastDIM with
function 82.77 0.95 908.45 1497.15
pointer-only
protection
FastDIM with | g, o 0.97 936.86 1488.97
full protection

3. Performance on overall system

In order to evaluate the performance of FastDIM on pro-
tecting the overall system with concurrent programs, we
ported our work to harden the Linux/Android kernel 3.1
and a legacy Android (v4.3) on ARMv7 platform. This
version of Android has several memory corruption vul-
nerabilities, such as CVE-2014-3100 in the KeyStore ser-
vice (Q2), in which a stack buffer is created by the func-
tion KeyStore::getKeyForNamelocated located in system/
security /keystore /keystore.cpp. In this function, the file-
name array is allocated on the stack and the input pa-
rameter keyName is copied into this array by calling a
function. However, that function does not verify the size
of the input parameter keyName, allowing attackers to
execute arbitrary code and consequently obtain sensitive
key information or bypass intended restrictions on cryp-
tographic operations. Our experiment showed that Fast-
DIM was able to detect the modification of the return
address caused by this vulnerability.

Overall, the security-hardened system image is 2.5%
larger than the original one. The binder mechanism is
part of the Android kernel and serves as the major inter-
process communication mechanism for Android. FastDIM
increased the binder latency by 1.4% on average (Q3).
Lastly, AnTuTu is a well-known benchmark tool for mo-
bile platforms widely used to evaluate the overall system
performance across different hardware platforms. On av-
erage, the overhead of the security-hardened kernel pro-
tected by FastDIM is around 3% (Q3).

VI. Conclusion

This paper introduces, develops, and assesses FastDIM, a
system devised to shield user applications from control-
related and data-centric attacks. To minimize runtime
overhead, we introduce optimization strategies such as
OCRAM-based shared memory and hoisting. FastDIM
was rigorously tested through comprehensive experiments,
demonstrating its accuracy, effectiveness, and efficiency.
Our methodology advances towards a deterministic secu-
rity defense, aiming for complete immunity against mem-
ory corruption attacks.
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