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Abstract — Software vulnerabilities,  particularly memory corruption, are significant sources of security breaches.
Traditional security measures like data-execution prevention, address space layout randomization, control-flow integ-
rity, code-pointer integrity/separation, and data-flow integrity provide insufficient protection or lead to considerable
performance degradation. This research introduces, develops, and scrutinizes FastDIM, a novel approach designed to
safeguarding user applications from memory corruption threats. FastDIM encompasses an low-level virtual machine
(LLVM) instrumentation mechanism and a distinct memory monitoring module. This system modifies applications in
user space into a more secure variant, proactively reporting vital memory operations to a memory monitoring compon-
ent within the kernel to ensure data integrity. Distinctive features of FastDIM compared to prior methodologies are
twofold:  FastDIM’s  integrated  out-of-band  monitoring  system  that  secures  both  control-flow  and  non-control  data
within  program  memory,  and  the  creation  of  a  dedicated  shared  memory  space  to  enhance  monitoring  efficiency.
Testing a prototype of FastDIM with a broad spectrum of real-life applications and standard benchmarks indicates
that FastDIM’s runtime overhead is acceptable, at 4.4% for the SPEC CPU 2017 benchmarks, while providing the
defense against memory corruption attacks.
Keywords — Memory corruption, Control-flow integrity, Data-flow integrity, Compiler, Software hardening.
Citation — Jian Huang, Yanbo Li, and Hao Han, “Design, realization, and evaluation of FastDIM to prevent
memory corruption attacks,” Chinese Journal of Electronics, vol. 34, no. 4, pp. 1233–1246, 2025. doi: 10.23919/cje.2024.
00.218. 

 

I. Introduction
Within the domain of software security, memory corrup-
tion lays the foundation for numerous vulnerabilities and
attacks that undermine contemporary computing environ-
ments. Memory corruption emerges as a persistent issue,
particularly  in  low-level,  memory-unsafe  programming
languages  like  C/C++.  Attackers  leveraging  this  flaw
can illicitly modify data in memory, leading to unautho-
rized code execution, elevation of privileges, data breach-
es, and more. Such software flaws are central to a multi-
tude of vulnerabilities and actual attacks. Addressing the
intricacies of memory corruption demands advanced pro-
tective strategies, especially as adversaries continually re-
fine their methods to exploit these weaknesses.

Memory  corruption  attacks  fall  into  two  primary
classifications:  control-oriented  and  data-oriented. Con-
trol-oriented  attacks  aim  at  memory  objects  linked  to
control  transfers,  including  return  addresses,  function

pointers, and pointers within virtual function tables. An
intruder altering these specific data points can redirect or
alter the control flow of a program, leading to the execu-
tion of  unauthorized code.  Conversely,  data-oriented at-
tacks, which focus on data not related to control, repre-
sent an evolving security challenge that has gained prom-
inence recently.

Control-oriented cyberattacks initially exploited code
injection techniques, but more recent strategies have em-
ployed return-oriented programming (ROP) [1] and just-
in-time (JIT) [2] methods to execute code-reuse attacks.
Various  defensive  mechanisms  have  been  introduced  to
counteract  control-flow hijacking,  showing  a  trend  to-
wards enhanced practicality and efficiency. Such defenses
encompass  data-execution  prevention  [3],  strategies  for
memory  randomization  including  address  space  layout
randomization (ASLR) [4], data space randomization [5],
the insertion of randomized no-operation (NOP) instruc- 
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tions  [6],  and  timely  address  space  randomization  [7].
Moreover, control-flow integrity (CFI) along with its var-
ious  adaptations  [8], as  well  as  measures  for  safeguard-
ing code pointers  like cryptographically enforced control
flow integrity (CCFI) [9] and code-pointer integrity/sep-
aration  (CPI/CPS)  [10],  are  notable  examples  of  these
protective measures.

While  control-flow  attacks  are  significant,  they  are
not the sole adverse effects stemming from memory cor-
ruption  vulnerabilities.  Non-control  data,  which  is  more
prevalent  in  a  program’s  memory,  can  also  be  a  target
for  attackers,  who  might  modify  it  to  elevate  privileges
or circumvent security measures. The initial examples of
non-control-flow  (or  data-oriented) attacks  were  intro-
duced by [11], [12], highlighting that these attacks neces-
sitate  specific  knowledge  about  the  application’s seman-
tics,  challenging  even  for  advanced  attackers.  The  true
potential  of  data-oriented  attacks  was  later  unveiled  by
Hu et al. [13], who devised a novel data-flow stitching ap-
proach, enabling the systematic creation of data-oriented
attacks  without  an  in-depth  understanding  of  program
semantics.  As data-oriented attacks do not alter control
flows,  they  evade  detection  by  leading  control-flow pro-
tection  mechanisms.  To  counter  such  attacks,  methods
like  dynamic taint  analysis  [14],  which tracks  suspicious
data  flows  and  is  often  employed  in  malware  detection
and  vulnerability  identification,  were  adapted  for  real-
time use. Data-flow integrity (DFI) [12] is another strate-
gy,  ensuring  that  data  flows  during  execution  do  not
stray from a pre-determined data-flow graph established
via static  analysis.  Nonetheless,  these  defensive  strate-
gies can lead to significant overhead if  specialized hard-
ware support is unavailable.

Furthermore, most existing defenses against memory
corruption attacks use inlined reference monitors (IRM),
where  monitor  code  is  inlined  into  target  programs.
While  this  enables  program-specific  optimizations,  one
problem is that monitor code cannot run in parallel with
target programs; this can cause a large performance over-
head when  the  number  of  checks  inlined  into  the  pro-
gram is significant.

To tackle  these  issues  associated  with  memory  cor-
ruption,  we  unveil  FastDIM,  an  innovative  framework
engineered to enhance program defenses against memory
corruption threats.  FastDIM is comprised of  two princi-
pal elements: an low-level virtual machine (LLVM)-based
instrumentation  toolchain and  an  out-of-band memory
observer.  The  toolchain  involves  the  collection  of  tools
and  the  instrumentation  process  integrated  into  the
LLVM compiler framework, which inserts security checks
and  monitoring  capabilities  into  the  code.  A  memory
monitor,  functioning  as  a  kernel  module,  safeguards  the
integrity  of  these  objects  by  keeping  a  shadow  copy.  If
any discrepancies or unusual sequences of operations are
detected, FastDIM intervenes by halting the program to
avert potential memory corruption attacks. Notably, ear-
lier CFI strategies utilized a comparable shadow stack to

impose  dynamic  constraints  on  function  returns.  How-
ever,  due  to  the  significant  overhead,  the  shadow  stack
was  later  discarded  in  favor  of  enhanced  performance.
FastDIM addresses  this  challenge  by  employing  on-chip
random access memory (OCRAM) to create shared mem-
ory,  enabling  rapid  shadow  copying  and  verification.
This design allows the monitoring code to operate in par-
allel with the target programs, significantly improving ef-
ficiency compared  to  traditional  inlined  reference  moni-
tor designs. Additionally, we implement several optimiza-
tion  techniques,  including  loop-invariant  code  motion
and caching strategies.

FastDIM underwent  rigorous  testing  using  the  run-
time  intrusion  prevention  evaluator  (RIPE),  standard
performance evaluation corporation (SPEC) central  pro-
cessing unit (CPU) 2017 benchmarks, and real-world ap-
plications  with  known  vulnerabilities.  The  evaluations
demonstrated that  FastDIM effectively  identified  all  at-
tack  attempts  within  the  RIPE  benchmarks  and  those
targeting real-world susceptible applications. In terms of
runtime performance,  FastDIM demonstrated  a  geomet-
ric mean overhead of 4.4% and reached a maximum over-
head of 27% on the SPEC CPU 2017 benchmarks.

In  conclusion,  our  research  presents  the  following
key contributions:

• We have crafted an out-of-band memory observer
that addresses both control- and data-oriented attacks on
memory integrity.  We  have  also  created  an  LLVM  in-
strumentation tool to allow applications to be protected
by the monitor.

• Our development of OCRAM-based shared mem-
ory  facilitates  fast  communication  between  the  memory
observer  and  the  programs  it  safeguards.  This,  along
with various  optimization  techniques,  substantially  low-
ers the monitoring overhead.

• A prototype of FastDIM has been developed and
assessed  using  benchmarks  and  real-world  scenarios  on
the  development  board  with  model  IMX6DQ6DSL.  The
outcomes  of  these  evaluations  indicate  that  our  method
effectively  identifies  memory  corruption  attacks  while
maintaining a manageable overhead.

The  following  parts  of  this  paper  are  structured  as
follows:  Section  II  explores  prior  research,  highlighting
established  methodologies  and  their  constraints.  Section
III describes the design principles of FastDIM, with Sec-
tion IV describing a detailed implementation.  Section V
offers an extensive assessment of FastDIM’s performance.
Finally, Section VI summarizes our insights and outlines
prospective research avenues. 

II. Related Work and Background
 

1. Related work
Control-flow attacks and defenses  CFI is  recognized as
a systematic security approach [8] to counter control-flow
attacks.  Notably,  CFI has been integrated within Clang
and Visual Studio [15], respectively. Essentially, CFI ob-
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structs an attacker’s ability to alter control flows at will
during  a  program’s  execution,  maintaining  adherence  to
a predefined control-flow graph while the program runs.
Over decades, original CFI has been improved in various
ways.  For  example,  compact  control  flow  integrity  and
randomization  [16] enhances  performance  by  randomiz-
ing legitimate transfer target layouts. Opaque CFI [17] is
designed  so  that  even  if  attackers  analyze  the  modified
code, they can’t gain insights into the legitimate control
jump targets.  A CFI method for  binaries  (bin-CFI)  [18]
offers a CFI implementation relying solely on a stripped
binary without needing the program’s source code. Mod-
ular  CFI  [19] applies  CFI  principles  to  programs  com-
posed  of  distinct  compilation  units,  enhancing  modular
security.

Besides,  hardware  capabilities  [20]–[28]  have  been
leveraged  to  enhance  the  effectiveness  of  CFI.  Control
flow integrity montior (CFIMon) [20] utilizes the branch
tracing features  of  the  processor  to  gather  transfer  tar-
gets selected by the application, verifying these against a
points-to-analysis outcome. kBouncer proposed in [21] in-
tervenes during system call  executions,  utilizing the last
branch  record  (LBR)  available  on  Intel  processors  to
identify transfer target patterns indicative of an ROP at-
tack. ROPecker proposed in [22] also intervenes at criti-
cal security  checkpoints,  reviewing  the  LBR  while  inte-
grating  past  branch choice  reviews  with  a  forward-look-
ing analysis. Address-based CFI [24] presents a hardware-
assisted fine-grained CFI design that reformulates labels
as  the  lower  bits  of  addresses.  Slot-based  CFI  [27] pro-
poses a new fine-grained forward CFI implementation by
combining  existing  coarse-grained instruction  set  archi-
tecture extensions with software modifications.

Non-control  attacks  and  defenses  The  initial  de-
monstrations  of  data-oriented  attacks  [29]  introduced  a
classification  where  attacks  focusing  solely  on  crucial
data structures were labeled as pure data attacks. Subse-
quent studies [11] delved deeply into this type of assault,
uncovering their  profound  effects  on  practical  applica-
tions.  Identifying  susceptible  critical  data  within  source
code  for  these  exploits  traditionally  demanded  manual
labor. However, an innovative approach by research [13]
enabled  the  automated  generation  of  data-oriented ex-
ploits.  Research  [30] introduced  a  more  nuanced  tech-
nique for crafting such exploits, using specific vulnerable
functions to develop Turing-complete challenges to CFI.
Additionally,  data-oriented  programming  [31] has  en-
hanced the depth of non-control data attacks by identify-
ing  data-oriented  gadgets  within  the  software,  enriching
the potential for such attacks.

Numerous  defensive  strategies  have  been  developed
to thwart data-oriented attacks.  Data-flow integrity,  for
instance,  aims  to  ensure  that  a  program’s data  flow re-
mains consistent with a predefined data-flow graph [12],
[32]–[35].  Similar  to  CFI,  DFI  has  also  been accelerated
by  hardware  features.  For  example,  runtime  scope  type
integrity  [36]  leverages  ARM Pointer  Authentication  to

enforce  both  code  and  data  pointers  to  conform  to  the
original programmer’s intent. Alternatively, some defens-
es focus on enhancing memory safety. For example, Soft-
bound  [37]  introduces  memory  safety  to  the  inherently
unsafe  C  language  through  bound  checking  and  fat
pointers.  Compiler  enforced  temporal  safety  [38] ad-
vances this approach by specifically targeting the preven-
tion of  memory errors,  while  CCured (a  program trans-
formation system that adds type safety guarantees to ex-
isting  C  programs)  [39]  introduces  a  type-safe  system
that can statically identify potential  memory errors and
apply dynamic bound checks to mitigate them. However,
the  significant  performance  overhead  associated  with
these methods can hinder their practical application. 

2. Motivating examples
Figure 1 shows an instance of a program with vulnerabil-
ities that are challenging for the aforementioned solutions
to  secure  effectively.  In  this  example,  the  readPacket()
function  (line  6)  has  a  buffer  overflow  vulnerability.  It
may  overwrite  adjacent  memory  of  packet  and  change
the  value  of  authenticated  from 0  to  1  intentionally.  In
that  case,  the  attacker  can  bypass  the  authentication
branch  (line  7)  without  providing  a  valid  credential.
While path-sensitive analysis [40] might resolve this par-
ticular issue, the set pertaining to any control-flow trans-
fer  must  be  precisely  approximated.  Any  errors  in  this
approximation could result  in  the  program malfunction-
ing even when protective measures are in place.
  

Figure 1  A demonstration showing the impact of non-control data.
 

Figure 2 showcases a scenario derived from a known
real-world  vulnerability  (from  common  vulnerabilities
and exposures, CVE-2016-2059) involving a linked list of
compound  structures,  each  embedded  with  a  function
pointer. In this example, a susceptible function (line 18)
interacts  with  a  structure,  potentially  removing  some
structures  from the  list  and  deallocating  them from the
heap.  Consequently,  when  the  function  pointer  func  is
accessed  at  line  21,  there’s  a  risk  it  could  reference  a
freed location on the heap or, worse, an address manipu-
lated  by  an  attacker  post-deallocation  of  the  compound
structure. This situation underscores the difficulty static
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analysis faces in accurately determining the legitimacy of
a function pointer’s content at a specific moment in the
program’s execution.
 
 

Figure 2  A case study demonstrating how use-after-free vulnerabili-
ties can circumvent conventional CFI defenses.
  

3. Threat models
User  programs  are  compiled  using  a  specialized  LLVM
toolchain and are under the surveillance of  our memory
observer.  While  these  applications  are  generally  secure,
they may contain vulnerabilities that could enable mem-
ory corruption by an attacker, who then aims to under-
mine the execution integrity and take control of the pro-
gram’s  behavior.  Echoing  prior  research,  we  postulate
that  the  attacker  is  restricted  to  corrupting  writable
memory areas, meaning they cannot alter read-only sec-
tions, such as the executable code. Applications not com-
piled  with  our  toolchain  are  considered  unreliable  and
are not  allowed  to  execute  without  restrictions.  Conse-
quently,  we  exclude  the  possibility  that  malware  under

the attacker’s command can execute any operations with-
in  the  system.  Employing  code  scanning  and  anti-virus
tools is advised to mitigate these risks.

Our trust is placed solely on the security of operat-
ing  system  kernels.  Consistent  with  preceding  research,
this paper does not account for physical intrusions, includ-
ing cold boot [41]  attacks and bus monitoring [42],  [43],
nor  does  it  address  denial  of  service  (DoS)  attacks  or
cache side-channel exploits [44]–[47]. 

III. System Design
 

1. Overall architecture
FastDIM represents  an  integrated  approach  designed  to
safeguard  the  integrity  of  security-sensitive memory  ob-
jects, thereby thwarting data-oriented attacks. This pro-
tection is facilitated by compiler instrumentation coupled
with  a memory  observer.  As  depicted  in Figure  3,  the
tailored compiler inserts programs with a shared memo-
ry  space  between  the  application  and  the  observer  for
logging  the  activities  of  safeguarded  memory  objects.
This arrangement enables the observer to verify data in-
tegrity perpetually. The observer within the kernel space
keeps a shadow copy of the safeguarded memory objects,
synchronizing these copies with the program’s actions. If
a  memory  object  is  compromised  through  a  vulnerabil-
ity, it  will  go  unreported  to  the  observer,  causing  dis-
crepancies between the shadow copy and the actual data.
Moreover, the  observer  will  identify  any  abnormal  re-
porting sequence that deviates from the program’s antici-
pated control flows, prompting program termination and
an alert signal.

Our methodology  distinguishes  itself  from  prior  ef-
forts  by  offering  a  segregated  environment  for  program
monitoring. A standalone observer, operational within the
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Figure 3  An overall system architecture of FastDIM.
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kernel, is tasked with verifying data integrity. The use of
OCRAM  as  shared  memory  facilitates  swift  interaction
between the  program  and  the  observer.  Individual  pro-
grams, identified by their task identifier (tid), concurrent-
ly post  messages  to their  designated shared memory ar-
eas. The observer accesses these messages from the shared
memory,  ensuring  the  program’s  operation  remains  un-
interrupted. Interaction  with  the  shared  memory  is  re-
stricted  to  well-defined application  programming  inter-
faces (APIs),  with  any  unauthorized  attempts  being  in-
tercepted.  To  ensure  security,  a  message  authentication
code (MAC) verifies  each message,  preventing programs
from  sending  unauthorized  messages  to  shared  memory
regions  not  assigned  to  them.  Subsequent  sections  will
delve into the specifics of each FastDIM component. 

2. Compiler-time instrumentation
The objective  of  the  instrumentation  is  to  integrate  re-
porting instructions into applications via our specialized
compiler. Initially, this compiler is tasked with pinpoint-
ing  all  the  memory  elements  that  require  protection.  In
this context, sensitive information encompasses elements
such as function pointers,  virtual  function tables (vptr),
return  addresses,  and  additional  non-control  data  that
users have marked for attention.

•  Return  addresses.  The  return  address,  a  well-
known  focal  point  for  control-flow  attack  vectors,  is
stored  on  the  stack  each  time  a  function  is  invoked.  If
the return address has been compromised, it provides an
avenue for attackers to execute chosen code, such as in-
jected  scripts  or  ROP gadgets.  Despite  the  employment
of  existing  defense  mechanisms  like  stack  canaries,
ASLR,  and  Safestack  can  address  this  problem to  some
extent, the latest research [48] reveals that more sophisti-
cated attacks can still bypass these measures. Therefore,
protecting  return  addresses  continues  to  be  a  critical
component of our FastDIM.

•  Function  pointers.  Function  pointers  are  a  vital
component  of  control-flow  transfers,  encapsulating  the
address  of  functions.  Typically  situated  in  the  stack,
heap,  or  various  data  segments,  they  play  an  essential
role in the functionality of programs. If an attacker man-
ages to tamper with a function pointer, they can manipu-
late the program’s control flow to divert to a specific lo-
cation  when  the  program  performs  an  indirect  call  via
that pointer.

•  Vtables  pointers.  In  C++,  classes  with  virtual
functions, or those inheriting from such classes, utilize a
virtual  function  table  (vtable)  during  execution.  This
vtable  serves  as  a  look-up  table  containing  pointers  to
the code of each virtual function within the class, facili-
tating  dynamic  dispatch.  While  the  vtable  is  located  in
read-only  memory  segments,  the  pointer  to  the  vtable’s
base  (commonly  known  as  vptr)  resides  in  a  writable
memory area. An attacker can modify the program’s con-
trol  flow  by  modifying  this  vptr,  thereby  affecting  the
behavior of C++ programs.

• Annotated non-control data. As shown in Figure 1,
data that does not control program flow can still be piv-
otal.  For instance,  altering parameters in crucial  system
calls  (e.g.,  setuid,  execute)  could  result  in  unauthorized
privilege elevation  or  execute  unexpected  program  ac-
tions. Modifying  data  in  memory,  especially  data  de-
rived from configuration  files,  might  enable  the  circum-
vention of built-in access controls in server applications.
Moreover, if data that influences decision-making is alter-
ed,  an attacker  could steer  a  program’s control  flow to-
wards unintended pathways, potentially evading security
mechanisms.  Identifying  such  critical  non-control  data
automatically remains a challenging issue, necessitating a
deep understanding of the program’s semantics, which is
beyond  the  scope  of  this  discussion.  Nonetheless,  some
methodologies from prior research, such as [49], [50], offer
strategies for automatically detecting sensitive data.

Locating sensitive data in the program  To identify
various types of sensitive data, we employ distinct strate-
gies. For example, a return address is typically identified
by a fixed offset from the stack’s frame pointer.  Due to
optimizations like function inlining and leaf-function op-
timization,  not all  functions store their  return addresses
on the stack. If the return addresses are not on the stack,
monitoring them  is  unnecessary,  assuming  that  an  at-
tacker cannot modify the registers directly.  For locating
function  pointers,  we  depend  on  the  type  information
provided by the  compiler.  For  function  pointers  embed-
ded  within  complex  data  structures  (such  as  structures,
arrays,  or  pointers  to  function  pointers),  we  conduct  a
recursive  search  through  all  fields  of  an  aggregate  type
and  its  subtypes.  Special  attention  is  required  when  a
function  pointer  undergoes  casting  to  or  from  other
types, for instance, a void* type. We apply flow analysis
to track memory objects that are not initially identified
as  function  pointers  but  derived  from  or  converted  to
function  pointers.  Last,  identifying  vtable  pointers  is
done  via  the  C++  application  binary  interface,  using
naming conventions for virtual function calls to locate all
vtables  and vptrs  associated with each class  object.  For
sensitive  non-control  data,  we  use  attribute  annotations
(_attribute_((annotate(“sensitive”)))) in the source code
to mark them explicitly.

Verifying  sensitive  data  Once  FastDIM  identifies
the  relevant  memory  objects,  the  next  step  is  to  insert
the  code  of  security  reporting  within  the  program.  This
process  involves  monitoring  all  store  instructions  and
memory  duplication  operations,  like  memcpy,  to  notify
the observer,  enabling the creation of  a  shadow copy of
the  objects’ legitimate contents.  Nonetheless,  this  ap-
proach encounters  two practical  challenges.  First,  deter-
mining the content of a pointer reference is complex. For
instance, program A utilizes memcpy(i8*<dest>, i8*<src>,
i32<len>) to  copy  an  array  of  function  pointers.  Pro-
gram  B  uses  the  same  function  to  duplicate  structured
data  containing  a  function  pointer  field.  Relying  solely
on memcpy’s provided data is inadequate. Therefore, we
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use  backward  analysis  to  ascertain  the  original  pointer
type.  Second,  reporting  the  contents  of  memory  objects
initialized  within  a  function  is  straightforward.  We  can
insert reporting instructions right after the object initial-
ization.  For  memory  objects  initialized  statically,  we
place reporting instructions at the main function’s start,
ensuring the observer is informed of their correct values
prior  to  their  initial  use.  However,  how  do  we  handle
memory  objects  initialized  in  libraries  without  a  main
function? To solve this, we devise a helper function with
a distinct naming convention,  avoiding the need for un-
stable  link-time  optimization  (LTO)  or  cross-dynamic
shared object methods. This helper function encompasses
all  necessary  reporting  instructions  for  memory  objects
initialized  within  libraries.  Upon  the  program’s  launch,
we search for these helper functions in the libraries’ sym-
bol tables.  If  found,  we  dynamically  invoke  these  func-
tions  at  the  main  function’s  commencement.  Section  IV
delves deeper into the implementation specifics.

To maintain the integrity of sensitive data in a pro-
gram,  it’s  crucial  to  inform  the  observer  for  validation
checks whenever such data is utilized. In the case of non-
return  data  like  function  pointers,  vptrs,  and  specially
annotated memory objects,  FastDIM monitors  every  in-
struction  that  loads  data,  as  these  elements  need  to  be
loaded into registers prior to their use. Reporting instruc-
tions are  strategically  placed  just  before  each  load  in-
struction. Additionally, when memory is transferred from
one location to another, we integrate instructions before
the  copy operations  to  verify  the  source’s  integrity.  For
return  addresses,  the  reporting  instructions  are  placed
prior to the ret instructions in functions that are unopti-
mized.  It’s important  to  note  that  no  additional  instru-
mentation  is  required  for  sensitive  data  already  present
in registers, as such data would have been verified when
loading into the registers.

Lifetime  of  sensitive  data  To  mitigate  the  attack
shown in Figure 2, FastDIM monitors the lifespan of sen-
sitive  data.  Such  data,  when  allocated  on  a  function’s
stack, is  eradicated  once  the  function  concludes.  Fast-
DIM aids in this process by integrating reporting instruc-
tions  prior  to  the  function’s  ret  instruction.  Similarly,
when deallocating a memory segment on the heap, Fast-
DIM dispatches  an  alert  to  the  observer,  who  then  ex-
punges the associated shadow copies. During a fork() sys-
tem  call,  which  clones  the  memory  pages  of  the  parent
process  for  the  child,  it’s  crucial  to  inform the  observer
about  the  new  memory  locations.  While  both  processes
initially seem to hold separate instances of sensitive data,
the copy-on-write (COW) mechanism delays the duplica-
tion of the parent’s memory pages until they are altered.
Therefore,  FastDIM  incorporates  a  post-fork  reporting
instruction to signify the commencement of the sensitive
data’s new cycle within the child process. 

3. Runtime integrity monitoring
The responsibilities of the observer encompass:  1) Over-

seeing the  shared  memory  that  facilitates  communica-
tion across user and kernel spaces; 2) Confirming the le-
gitimacy of  the actions on safeguarded data as  reported
by  the  applications;  3)  Executing  appropriate  measures
depending  on  operations;  4)  Halting  the  execution  of  a
compromised program if an infringement is identified.

Figure 4 depicts how an OCRAM is utilized to con-
figure  shared  memory,  incorporating  several  circular
buffers to speed up the data transfer  process  to the ob-
server. This shared memory is structured as a block ma-
trix, with each column of the matrix representing an in-
dividual  circular  buffer.  Within  these  circular  buffers,
each element is  organized into a specific  data structure,
detailed as follows:

 

Msg :=



tid, address, value, OP_STORE, MAC
tid, address, value, OP_LOAD, MAC
tid, address, _, OP_PUSH, MAC
tid, address, _, OP_POP, MAC
tid, _, parent′s tid, OP_FORK, MAC
tid, _, parent′s tid, OP_FREE, MAC

Each circular  buffer  is  allocated  to  programs  shar-
ing the same hash of their tid. When a program needs to
report  an  operation  involving  protected  data,  it  inserts
an entity  into  its  designated  circular  buffer.  This  ap-
proach permits  various  processes  to  interact  with  dis-
tinct circular  buffers  simultaneously.  A  locking  mecha-
nism is employed to prevent race conditions when multi-
ple  programs  share  a  single  circular  buffer.  Each  entry
within the circular buffer includes a MAC. Initially, our
instrumentation tool injects additional code to acquire a
key from the observer when setting up the shared memory
for each program. This key is used to append a MAC to
every message sent to the shared memory. The observer,
possessing the corresponding key, verifies these messages.
Unique  keys  are  assigned  to  different  circular  buffers,
preventing attackers  without  the  correct  key  from  ma-
nipulating the buffers. Furthermore, interaction with the
shared  memory  is  restricted  to  specific  APIs,  with  any
unauthorized attempts being intercepted. To circumvent
a scenario where a malfunctioning program could monop-
olize  the  shared  memory,  a  timeout  feature  is  in  place,
ensuring that the memory is not locked indefinitely.

The protected  program  communicates  with  the  ob-
server through six distinct operation types: OP_STORE,
OP_LOAD,  OP_PUSH,  OP_POP,  OP_FORK,  and
OP_FREE. For instance, to indicate the initialization or
modification of a function pointer, vtable pointer, or oth-
er non-control  data,  the program sends an OP_STORE
message, which includes the data’s address and content,
to the shared memory. The observer then creates a shad-
ow copy of this data in a specialized lookup table. When
dealing with return addresses, an OP_PUSH message is
dispatched to shared memory, prompting the observer to
replicate the return address in a shadow stack. Notably,
an OP_PUSH message contains only the address, unlike
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an OP_STORE message, which carries both address and
value. For usage of sensitive data, the program sends ei-
ther an OP_LOAD or OP_POP message to the shared
memory,  signaling  the  observer  to  check  data  integrity.
Depending on  the  type  of  operation,  the  observer  con-
sults the shadow lookup table for non-return data or the
shadow stack  for  return  addresses.  If  the  observer  finds
that the shadow copy is missing or differs from the pro-
gram’s reported runtime value, a violation is flagged. In
the case  of  an  OP_FORK message,  the  observer  dupli-
cates all shadow copies from the parent to the child pro-
cess,  safeguarding the sensitive data in the new process.
Lastly,  an  OP_FREE  message  triggers  the  observer  to
eliminate  any  related  shadow  copies  from  the  tables  or
stacks, thwarting use-after-free vulnerabilities.

O(1)

The  observer  operates  a  random  access  memory
(RAM) cache  dedicated  to  a  specific  category  of  safe-
guarded  memory  objects.  These  objects  are  organized
using  hash  tables  to  enable  search efficiency,  al-
though the implementation nuances vary.

Shadow  lookup  table  Function pointers  are  main-
tained in a two-tier lookup table. As illustrated in the left
part of Figure 5, a hash bucket contains the task ID, the
data address, the data’s value, and a timestamp. When-
ever a new message is written to the shared memory by
the program, the observer verifies the message and calcu-
lates the hash key using the task ID and data address in-
cluded in  the  message.  Once  the  key  is  determined,  the
observer interacts  with  the  appropriate  hash  bucket  de-
pending on the message type. For example, if the type is
OP_STORE,  the  observer  will  create  a  new  bucket  to
make  a  shadow  copy  of  sensitive  data  given  that  no
match is found or update the data value of the existing
bucket  in  the  table.  If  the  message  type  is  OP_LOAD,
the observer will compare the runtime value of sensitive
data to the stored shadow copy. The observer will issue a
violation if a mismatch or no bucket is found.

To  enhance  the  efficiency  of  replicating  or  deleting
groups  of  shadow copies  during  task  forking  or  exit,  an

O(1)

auxiliary  task  hash  table  is  established,  as  depicted  in
the right part of Figure 5. Within this table, keys are de-
rived  solely  from  the  task  ID,  and  each  hash  bucket
holds  a list  of  shadow copy references  sharing that task
ID.  Consequently,  this  structure  enables  the  deletion  of
obsolete entries or the duplication of entries from a par-
ent task to be executed as an  operation.

Shadow  stack  Similar to  the  hash  table  for  indi-
rect calls,  the observer manages a shadow stack of each
process under monitoring in another hash table.  A hash
key  is  generated  from  the  task  ID,  and  a  hash  bucket
holds the task ID along with a shadow stack that exclu-
sively contains return addresses. When a user-space pro-
gram  (process)  pushes  a  return  address  onto  the  stack,
the  observer  will  do  the  same  operation  on  the  shadow
stack associated  with  that  process.  When  a  return  ad-
dress  is  popped  when  a  callee  function  returns  to  the
caller function, the observer will also pop the stored ad-
dress from the shadow stack and compare if the two ad-
dresses  are  equal.  A  return  address  violation  will  be
claimed if they are not equal, and the observer will take
subsequent  actions.  When  a  task  exits,  the  module  will
remove all remaining entries from the hash table. Unlike
the indirect call, deleting the task entries and their local
stacks is  straightforward,  and no auxiliary hash table  is
needed. 

4. Discussion
Security  guarantees  FastDIM  ensures  the  integrity  of
security-related memory elements such as return address-
es, function pointers, vtable pointers, and annotated sen-
sitive data (e.g., keys and configures), thereby thwarting
various  memory  corruption  attacks.  The  common  types
include  buffer  overflow  in  stack  or  heap,  format  string
vulnerability,  use-after-free,  and  integer  overflow.  These
attacks are typically the cause of more advanced attacks
such as  ROP  attacks,  JIT  attacks,  and  code  reuse  at-
tacks. Moreover, FastDIM functions akin to an intrusion
detection  system,  identifying  irregular  sequences  in  the
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Figure 4  Circular buffers and look-up tables in shared memory (The FIFO in the figure represents a first in first out queue).
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operations of  protected  data  that  deviate  from  a  pro-
gram’s anticipated control flows.

FastDIM  implements  stringent  measures  to  ensure
attackers cannot misuse shared memory to evade detec-
tion.  It  restricts  the  program’s  interaction  with  shared
memory exclusively  to  predefined  APIs.  Any  unautho-
rized access to shared memory outside these APIs is block-
ed because  the  OCRAM is  not  mapped  to  those  unau-
thorized processes. Furthermore, each program receives a
unique key when initializing shared memory communica-
tion with the observer. This key is used to create a MAC
for every  message  sent  to  the  shared  memory,  prevent-
ing  attackers  without  the  key  from altering  the  circular
buffers undetected.

Limitations  Our  methodology  prioritizes  runtime
efficiency  by  allowing  programs  to  run  without  pausing
for integrity verification. This approach might briefly en-
able  an  attacker  to  execute  exploits  before  the  observer
detects memory corruption. Nonetheless, the window for
such exploitation is minimal, given that the observer op-
erates on a dedicated core, continuously monitoring mes-
sages  from  circular  buffers  in  an  uninterrupted  round-
robin  sequence.  Consequently,  an  attacker’s  attempt  to
flood its circular buffer won’t hinder the observer’s oper-
ation  or  lessen  the  likelihood  of  detection.  To  minimize
the  potential  for  DoS  attacks,  future  enhancements  will
focus on implementing access controls for protected pro-
grams, such as establishing a whitelist and setting limita-
tions on the rate of message writing.

A potential issue is shared memory, which acts as a
system bottleneck.  To  manage  the  shared  memory  re-
gion’s  performance,  FastDIM  uses  an  OCRAM-based

shared memory with circular buffers and a locking mech-
anism to  prevent  race  conditions  when  multiple  pro-
grams  attempt  to  write  simultaneously.  Circular  buffers
help reduce collisions by ensuring that each program has
dedicated  space,  while  the  locking  mechanism  prevents
buffer overflow and ensures  orderly  access.  For  environ-
ments with many concurrent processes, scalability is fur-
ther enhanced  by  adjusting  buffer  sizes  based  on  ob-
served usage patterns. Regarding adversarial attacks, the
shared  memory  region  is  fortified  by  exclusive  access
through specific APIs and message authentication codes,
as mentioned  above.  If  the  platform  has  hardware  sup-
port such as trusted execution environment, shared mem-
ory  can  be  physically  isolated  or  set  up  with  dedicated
access controls that enforce stronger separation.

For  further  robustness,  we  are  exploring  techniques
like  rate-limiting  for  message  writes  and  adding  quotas
per process to prevent DoS scenarios within shared mem-
ory.  Additionally,  our  further  work  will  extend  our
framework to monitor shared memory usage patterns ac-
tively, triggering alerts if anomalous behaviors indicative
of adversarial actions are detected. 

IV. Implementation
The FastDIM framework  has  been  designed  with  scala-
bility and portability in mind. Although the current im-
plementation is developed within LLVM 3.9, the memo-
ry observer component is integrated into the Linux ker-
nel. It can be adapted across different operating systems,
compilers,  and  hardware  architectures.  That  is  because
FastDIM  is  primarily  designed  for  portable  operating
system  interface  (POSIX)-compliant  operating  systems.
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Its use of LLVM for instrumentation ensures compatibili-
ty  with  any  operating  system  that  supports  the  LLVM
toolchain. The out-of-band monitoring framework can al-
so be ported to other Unix-like systems with kernel-level
modules,  as  FastDIM primarily  relies  on  generic  kernel-
space  memory  operations.  Later  in  Section  V,  FastDIM
has been evaluated on x86 and ARM architectures. 

1. LLVM transform pass
Within the LLVM compiler structure, a program’s source
code  is  initially  transformed  by  the  front  end  (utilizing
Clang/Clang++ for C/C++ languages) into an interme-
diate representation (IR). Subsequent to this, a series of
LLVM passes are applied for optimization purposes. Fol-
lowing  these  optimizations,  the  back  end  is  responsible
for producing  assembly  code  tailored  to  particular  plat-
forms,  utilizing  the  refined  IR.  To  ensure  compatibility
and performance, FastDIM conducts its instrumentation
at  both  the  IR  and  assembly  stages.  Instrumentation
concerning non-return data occurs at the IR stage, while
return address  instrumentation  is  conducted  at  the  as-
sembly  stage,  allowing  for  targeted  protection  decisions
post-optimization. 

2. Support of libraries without LTO
Traditionally,  LTO is  utilized  to  facilitate  the  exchange
of information between modules during the linking phase,
enabling the sharing of target data from libraries to the
program.  However,  leveraging  LTO  in  LLVM  typically
requires  substituting  system  files  like  ld,  ar,  and  ranlib
with  versions  that  support  the  gold  plugin.  Moreover,
both the program and its associated libraries need to be
compiled  using  LTO.  To  circumvent  these  limitations,
we devised  a  method  allowing  each  module  to  be  com-
piled  separately  while  still  supporting  modularity.  This
approach  involves  embedding  a  helper  function  when-
ever target  data  is  detected.  While  not  altering  the  li-
brary’s core functionality, these functions offer a straight-
forward  method  for  the  program  to  communicate  with
the  monitor.  Upon  the  program’s initiation  or  when  li-
braries are dynamically brought in using dlopen, the pro-
gram is set up to inspect the symbol tables of the linked
libraries for our custom helper functions. Detected helper
functions are then executed right after the library loads.
This technique enables  the static  incorporation of  sensi-
tive data details into the code and the dynamic transfer
of  this  data  across  modules  upon  execution,  all  without
the necessity for LTO. 

3. Communication between application and
monitor

An  OCRAM-based shared  memory  is  established  be-
tween the applications and the monitor, which enables si-
multaneous program execution and integrity verification.
Specifically, the monitor allocates a segment of OCRAM
memory within  the  kernel.  User  applications  are  config-
ured  to  access  the  monitor  device  (e.g.,  /dev/monitor)
and link the designated ring buffer (see Figure 4) to their

virtual address space, utilizing their tid. When transmit-
ting  an  operation  message  to  the  monitor,  the  program
puts  the  message  into  the  ring  buffer,  functioning  as  a
producer. Concurrently,  the  monitor,  serving  as  a  con-
sumer,  retrieves  messages  from  the  ring  buffer.  This
shared memory arrangement allows both entities to func-
tion  autonomously,  eliminating  the  need  for  context
switching. This  setup considerably  diminishes  the  laten-
cy associated with integrity checks for user applications.
However,  it  is  worth  noting  a  minor  drawback:  a  slight
delay  exists  between the  usage  of  sensitive  data  and its
integrity verification.  To minimize this  lag,  the verifica-
tion  point  is  strategically  positioned  before  the  actual
load instructions.  Experimentation has shown this delay
to be negligible.

To minimize overhead, OCRAM is employed as the
shared  memory  in  specific  hardware  setups,  like  the
i.MX6 processor. This OCRAM, integrated into the mem-
ory  address  space,  can  be  directly  accessed  through  the
advanced extensible interface bus, bypassing the need for
a  memory  management  unit  required  for  regular  RAM
access. This approach substantially lowers run-time over-
head.  The  memory  observer  efficiently  polls  data  from
this shared memory, ensuring prompt processing of write
operations. A challenge with using OCRAM is the risk of
data  clashes  or  corruption  when  multiple  cores  attempt
simultaneous writes to the OCRAM. To counteract this,
circular buffers are utilized to decrease collision chances,
and a locking mechanism is employed to secure OCRAM
segments during access by any core. This polling method,
while  quicker  than  interrupt-driven  approaches,  does
have a trade-off in terms of  consuming certain CPU re-
sources. Detailed  results  from  this  approach  are  dis-
cussed in the subsequent section. 

4. Further optimization
We noticed that certain programs access function point-
ers  or  vptrs  repetitively  within  loops,  even  though  the
pointers’ values seldom change. Thus,  it  is  inefficient to
verify the  integrity  of  these  pointers  during  each  itera-
tion  of  the  loop.  Leveraging  this  insight,  we  applied  a
compiler  strategy  known  as hoisting to  execute  loop-in-
variant code movement. When a function pointer is iden-
tified as invariant within a loop, our technique relocates
the integrity verification code outside the loop, ensuring
the  check  is  executed  just  once  per  loop  execution.  For
cases  where  a  function  pointer’s  value  is  altered  within
the loop, we introduced a caching mechanism to prevent
redundant  checks.  This  cache  stores  all  data  written  to
the shared memory in an additional buffer. If a value is
reused, the system first verifies its presence in the cache.
If found, it bypasses notifying the integrity monitor for a
new check (i.e., writing the runtime value to the shared
memory with operator type OP_LOAD), thereby reduc-
ing the frequency of shared memory write operations. This
approach  considerably  decreases  the  number  of  shared
memory write activities. 
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V. Evaluation
We conducted a  series  of  detailed experiments  to  assess
our prototype, with the objective of addressing these in-
quiries:

(Q1) Correctness  Does our security mechanism ad-
versely impact the intended operations of the programs?

(Q2) Effectiveness  Does  our  prototype successfully
detect memory  corruption  attacks  targeting  return  ad-
dresses,  vtable  pointers,  function  pointers,  and  other
non-control data types?

(Q3) Efficiency  What is the extent of performance
overhead  that  FastDIM  introduces  to  the  protection
process? 

1. Performance on benchmarks
SPEC CPU 2017 (Q1&Q3)  SPEC CPU 2017 [51] has a
set  of  programs  and  additional  commands/scripts for
benchmarking. Each program was compiled using Clang/
LLVM 3.9 and tested on an Ubuntu 14.04.5 system with
an Xeon (R) CPU E5-1620 and 16 GB of RAM. It should
be noted that  Clang/LLVM 3.9 is  the latest  stable  ver-

sion  as  this  work  began.  Since  the  LLVM  is  backward
compatible, the toolchain can be easily ported to the lat-
est version (e.g., LLVM 10).

We  leverage  the  runcpu  command  to  validate  the
correctness  (Q1)  of  the  generated  executables.  Such  a
command will set up all of the benchmarks using the test
workload,  run  them,  and  verify  whether  we  get  correct
answers. The  results  show  that  all  the  hardened  pro-
grams passed the correctness tests. Table 1 presents the
overhead  of  running  the  SPEC  CPU  2017  benchmarks.
The “KLoc” column in  the  table  indicates  the  bench-
mark’s code size in thousands of lines. The “Original” col-
umn records the average execution time in seconds across
three iterations of the reference workload. To apply Fast-
DIM’s protection, we altered the CMake files to include
our LLVM pass (noted in LVM_MODULE_PATH) and
library  (in  link_directories)  and modified  the  CFLAGS,
CXXFLAGS, and LDFLAGS. The table’s fourth column
details the  overhead  when  FastDIM  secures  only  func-
tion pointers,  and  the  fifth  column  displays  the  over-
head for protecting all specified target types.

 
 

Table 1  Performance cost of SEPC CPU2017 benchmarks (n/a: not available)

Benchmark Measured performance Reported performance

Programs Original (s) KLoc Ours Ours (FP) πCFI Lockdown CCFI binCFI

557.xz_r 391± 17 33 +3.6% +3.3% n/a n/a n/a n/a

541.leela_r 491± 1 21 +8.3% +0.9% n/a n/a n/a n/a

531.deepsjeng_r 323± 3 10 +0.3% +0.7% n/a n/a n/a n/a

525.x264_r 350± 1 96 +10.5% +6.2% n/a n/a n/a n/a

523.xalancbmk_r 375± 3 520 +29.6% +15.3% +10.3% +118% +170% n/a

520.omnetpp_r 489± 4 134 +32.6% +21.3% +6.7% n/a n/a +45%

505.mcf_r 395± 6 3 +1.8% +0.1% +4.0% +2.0% +10% 0

502.gcc_r 315± 3 1304 +14.5% +8.9% +6.1% +50% n/a +4.5%

500.perlbench_r 488± 5 362 +26.8% +21.9% +8.2% +150% n/a +12%

544.nab_r 457± 0 24 +0.4% +0.4% n/a n/a n/a n/a

538.imagick_r 556± 1 259 +0.2% +0.5% n/a n/a n/a n/a

519.lbm_r 274± 3 1 +1.4% +0.1% −0.2% +2.0% n/a −2.5%

511.povray_r 540± 4 170 +27.3% +27.4% +11.3% +90% n/a +37%

510.parest_r 421± 3 427 +19.9% +3.1% n/a n/a n/a n/a

508.namd_r 282± 5 8 +1.2% +1.4% −0.3% +3.0% n/a −2%

Geo.Mean 400 57 +4.4% +2.1% +4.0% +20% +45% +8.5%
 

The outcomes indicate  that  FastDIM introduces  an
average overhead  of  2.1% when  safeguarding  only  func-
tion  pointers  and  4.4%  when  protecting  all  designated
targets across the 15 SPEC CPU 2017 benchmarks, with
the highest overhead being 32.6% on 520.omnetpp_r. It’s
acknowledged that  variances  in  overhead  among  differ-
ent programs are expected, as seen with cutting-edge so-
lutions, influenced by the quantity and utilization of pro-
tected memory objects within the program. For an equi-
table evaluation, the geometric mean is utilized to com-
pare FastDIM with other methods: virtual-table verifica-

π

tion  (VTV)  at  9.6%,  per-input  control-flow  integrity
( CFI) at  3.3%, modular  control  flow integrity (MCFI)
[19]  at  2.9%,  practical  context-sensitive  CFI  (PathAr-
mor)  at  3.0%,  dynamic  control-flow  integrity  method
(Lockdown) at 20%, CCFI [9] at 45%, ROPecker [22] at
2.6%,  bin-CFI  [18]  at  8.5%,  path-sensitive  variation  of
CFI (PITTYPAT) [40] at 12.7%, DFI [12] at 200%, key
property  based  DFI  (KPDFI)  [34]  at  9.53%,  against
FastDIM  (ours)  at  4.4%,  and  FastDIM  with  function
pointer  (FP)  only  at  2.1%.  Note  that  the  reported  per-
formance was cited from the survey [52] with SEPC CPU
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2006. We did not compare our approach with hardware-
based solutions.

Academic example (Q1&Q2)  For unit tests, we use
an example in the work [53] to demonstrate the capabili-
ty of FastDIM of protecting user-annotated sensitive da-
ta. As shown in Figure 6, the program takes a username
and a text input from the user, greets the user with the
greeter  function,  initializes  a key,  and encrypts  the text
with the key. This program has a format-string vulnera-
bility in  the  greeter  function,  which  could  allow  an  at-
tacker to take over the program and modify the key. The
global key is the sensitive data, so we marked it using a
LLVM attribute.  By  applying  FastDIM,  we  successfully
protect the integrity of the encryption keys.
  

Figure 6  Demonstration  of  user  annotation  to  prevent  data-orient-
ed attacks.
 

RIPE  benchmark  (Q2)  The  RIPE  benchmark  [54]
encompasses  various  vulnerable  points,  such  as  function
pointers and return addresses located in the stack, heap,
.bss, and .data segments, alongside numerous attack sce-
narios. We applied FastDIM to the RIPE benchmark, a
comprehensive  C  program  designed  to  simulate  diverse
attack methodologies  through  buffer  overflows  in  differ-
ent memory  segments  (stack,  heap,  .bss,  and  .data  seg-
ments). By default, RIPE is compiled for 32-bit systems
using  the -m32  flag.  Our  testing  environment  was  an
x86_32  Ubuntu  16.04  virtual  machine.  The  benchmark
explores 3840 attack permutations, with 83 initially suc-
cessful,  767  unsuccessful,  and 2990 deemed non-feasible.
Under  FastDIM’s shield,  all  previously  successful  at-
tacks were effectively intercepted. 

2. Performance on real-world programs
TORQUE resource manager (Q2)  Terascale open-source

resource and queue manager (TORQUE) [55] serves as a
distributed  resource  manager,  orchestrating  batch  jobs
and  compute  nodes  within  high-performance  computing
clusters. It  was  identified  that  TORQUE resource  man-
ager  versions  2.5.x  to  2.5.13  are  susceptible  to  a  stack-
based  buffer  overflow  vulnerability,  as  highlighted  in
CVE-2014-8729 and  CVE-2014-8787.  In  our  evaluation,
we aimed to ascertain whether FastDIM could thwart at-
tacks leveraging these vulnerabilities.  We also employed
two security enhancements from Clang/LLVM, using the
compile  options “-fsanitize=safe-stack” and “-fsanitize=
cfi”. However, simply compiling TORQUE with these op-
tions  led  to  executable  failures,  with  crashes  attributed
to illegal instructions triggered by CFI checks—possibly
due  to  CFI  misidentifying  legitimate  function  pointer
calls  as  indirect  call  breaches,  causing  the  program
counter  to  jump  to  an  invalid  operation.  Conversely,
FastDIM did not encounter this issue, and the TORQUE
executables modified by FastDIM were capable of execut-
ing  tasks  such  as  job  submission,  queuing,  dispatching,
and  deletion  without  any  hitches.  To  verify  FastDIM’s
effectiveness,  we  executed  an  overflow  attack  using  a
Python script (test_overflow.py) that dispatches a trans-
mission  control  protocol  (TCP)  packet  with  a  148-byte
payload,  inducing  a  buffer  overflow  in  the  TORQUE
server (pbs_server)  that  crashes  the  application.  Fast-
DIM successfully identified and countered this assault.

Null  HTTPd  (Q2)  Null  HTTPd  [56]  is  a  Linux-
based multi-threaded web server that was found to have
a remotely  exploitable  heap overflow vulnerability.  This
vulnerability arises when an attacker supplies a negative
length to the server, influencing the allocated size for the
read buffer  and causing a heap overflow.  This  flaw per-
mits an attacker to overwrite memory locations arbitrari-
ly via the free() function, as outlined in CVE-2002-1496
[56].  The  risk  involves  corrupting  the  CGI-BIN configu-
ration viariable stored in memory, which stores the direc-
tory path of executable programs processed during HTTP
request handling. Consequently, by altering this configu-
ration string, an attacker gains the capability to execute
arbitrary code surreptitiously.

In  the main.h file  of  the  program,  we  marked  the
string variable CONFIG config as sensitive by using the
_attribute_((annotate(“sensitive”)))  annotation.  After
integrating FastDIM to secure this program, the data at-
tack  targeting  this  sensitive  information  was  effectively
thwarted.

Apache HTTP server (Q3)  Our prototype was fur-
ther tested on Apache  HTTP server  version 2.4.27,  uti-
lizing the  integrated  ApacheBench  (ab)  tool  for  assess-
ment.  This  evaluation  took  place  on  an  x86  Ubuntu
14.04.5 virtual machine equipped with 4 cores and 4 GB
of RAM, where we initiated the Apache server using the
subsequent command line:

 

apachectl -f /local-path/conf/httpd.conf

On the host system, equipped with a Xeon(R) CPU
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E5-1620 and 16  GB  of  RAM,  we  executed  the  bench-
mark using this command line:

 

ab− n5000− c1000http : //127.0.0.0 : 80/

This  command  dispatches 5000 HTTP GET  re-
quests to the Apache server on the virtual machine, han-
dling as many as 1000 requests simultaneously. The pro-
cessing  time  for  each  request  averaged  around  128  ms,
with an overall data transfer rate of approximately 1798
KB/s. Table 2 presents a comparative analysis across ten
iterations.  On  average,  FastDIM  with  function  pointer-
only protection and FastDIM with full protection result-
ed in an overhead of 12%–24% and 12%–39%, respective-
ly, on the Apache HTTP server.
 
 

Table 2  Performance outcomes on Apache HTTP server

Method
Average

connection
time (ms)

Total
time (s)

Longest
connection
time (ms)

Transfer
rate

(kpbs)
Original
FastDIM 66.69 0.84 808.69 1798.43

FastDIM with
function

pointer-only
protection

82.77 0.95 908.45 1497.15

FastDIM with
full protection 92.96 0.97 936.86 1488.97

  

3. Performance on overall system
In order to evaluate the performance of FastDIM on pro-
tecting the overall system with concurrent programs, we
ported our work to harden the Linux/Android kernel 3.1
and  a  legacy  Android  (v4.3)  on  ARMv7  platform.  This
version of  Android  has  several  memory  corruption  vul-
nerabilities, such as CVE-2014-3100 in the KeyStore ser-
vice (Q2), in which a stack buffer is created by the func-
tion KeyStore::getKeyForNamelocated located in system/
security/keystore/keystore.cpp. In this function, the file-
name array  is  allocated  on  the  stack  and  the  input  pa-
rameter  keyName  is  copied  into  this  array  by  calling  a
function. However, that function does not verify the size
of  the  input  parameter  keyName,  allowing  attackers  to
execute arbitrary code and consequently obtain sensitive
key information or bypass intended restrictions on cryp-
tographic operations. Our experiment showed that Fast-
DIM  was  able  to  detect  the  modification  of  the  return
address caused by this vulnerability.

Overall, the security-hardened system image is 2.5%
larger  than  the  original  one.  The  binder  mechanism  is
part of the Android kernel and serves as the major inter-
process communication mechanism for Android. FastDIM
increased  the  binder  latency  by  1.4%  on  average  (Q3).
Lastly, AnTuTu is a well-known benchmark tool for mo-
bile platforms widely used to evaluate the overall system
performance across different hardware platforms. On av-
erage, the overhead of the security-hardened kernel pro-
tected by FastDIM is around 3% (Q3). 

VI. Conclusion
This paper introduces, develops, and assesses FastDIM, a
system devised  to  shield  user  applications  from control-
related  and  data-centric  attacks.  To  minimize  runtime
overhead,  we  introduce  optimization  strategies  such  as
OCRAM-based  shared  memory  and  hoisting.  FastDIM
was rigorously tested through comprehensive experiments,
demonstrating  its  accuracy,  effectiveness,  and efficiency.
Our methodology advances towards a deterministic secu-
rity defense, aiming for complete immunity against mem-
ory corruption attacks.
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