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Abstract—Controller Area Networks (CANs), the most widely
used protocols for in-vehicle networks, are vulnerable to various
attacks due to the lack of security countermeasures by design.
CAN messages are broadcast without source/destination labeling
and lack built-in encryption or authentication mechanisms,
thus suffering many attacks. To address this problem, we pro-
pose a lightweight CAN message obfuscation technique called
ShuffleCAN. Motivated by the idea of moving target defense
(MTD), ShuffleCAN is designed with a combined shuffling
scheme based on the hash chain and combinatorial coding tech-
niques to achieve both ID anonymization and payload shuffling.
With ShuffleCAN, selected or all transmitter and receiver pairs
can communicate in a private dialect over the standard CAN
protocol, so the eavesdropper cannot understand the meaning of
each message or inject a valid fake message. We implemented a
prototype and evaluated ShuffleCAN on Toyota’s testbed PASTA.
The experimental results show that ShuffleCAN outperforms
state-of-the-art CAN protection schemes.

Index Terms—Automotive Security, Controller area network,
Anonymous ID, Shuffle

I. INTRODUCTION

Controller Area Networks (CANs) were developed in the
early 1980s and widely utilized in various fields, including
automotive, marine, and industrial control systems. Due to
benefits such as robustness and low cost, CAN has become the
de facto communication standard for in-vehicle networks since
2008. Over CANs, various Electronic Control Units (ECUs)
can acquire and interpret sensor readings and adjust actuators
to control nearly all vehicle functions, including steering, ac-
celeration, lighting, etc. Unfortunately, CANs are primarily de-
signed to ensure reliable communication, but not for security.
The CAN bus broadcasts messages without source/destination
labeling and lacks encryption, authentication, or other security
protection commonly used in IT networks. Thus, an adversary
can easily eavesdrop on CAN messages to reverse engineer
desired data signals or inject fake CAN messages with spoofed
IDs or content. This may lead to an invasion of confidentiality,
integrity, and availability. Researchers have already demon-
strated various attacks through CANs [5], [8], [13].

For decades, numerous schemes have been proposed to
secure CAN communication. There exist some encryption
mechanisms [1], [2], [4] as well as hardware acceleration
for cryptography, but automotive stakeholders do not widely
adopt them. Hardware-based encryption requires modifica-
tion to existing ECUs’ hardware, which means deployment
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is more expensive. A software solution is preferable with
better compatibility but may cause extra latency on resource-
constrained ECUs, which is unacceptable for safety-critical
real-time systems. In fact, the encryption of the entire CAN
messages is unnecessary since only a few bits contain mean-
ingful information (see Section II for the detail). Another
method of securing the CAN bus is to add authentication, such
as using Message Authentication Codes (MACs). However,
since the data field in a CAN message is confined to 8 bytes,
only truncated MAC can be used. Hence, existing solutions
have not yet been sufficient to protect the CAN.

To address the problem, this paper proposes a lightweight
CAN message obfuscation scheme dubbed ShuffleCAN. Mo-
tivated by the idea of Moving Target Defense (MTD),
ShuffleCAN shuffles both the ID and bit position of the
message payload in a chain so that only the sender and
receivers know the changing sequence. By design, ShuffleCAN
does not waste time encrypting the message content. Instead,
only the bit positions of 0 and 1 are exchanged in a message.
We believe unbiased shuffling is sufficient to harden various
attacks over CAN. It should be noted that ShuffleCAN is
designed to be lightweight and complementary to existing data
ciphers. It should not incur too much burden on ECUs and
should cost minimal software modification.

However, designing an efficient shuffling scheme is not
straightforward. The first challenge is reducing the compu-
tation cost for running the shuffling algorithm on resource-
constrained ECUs. Traditional shuffling algorithms such as
Fisher–Yates [12] are able to generate unbiased permutation
sequence, but it is not efficient for CAN. We argue that
exchanging two bits with the same value (0 to 0 or 1 to
1) is meaningless. To this end, we propose a novel shuffling
algorithm based on combinatorial coding and lexicographic
ordering techniques. Secondly, it is unclear how to ensure
that the sender and receivers are synchronized well when the
transmission fails. For example, a certain ECU occurs bus-
off, while the sender may communicate with other receivers
normally. Even though the ECU resets, it will never understand
the current shuffled messages. We propose an error detection
and recovery algorithm for the failed receiver to “catch up”.

We have implemented and evaluated ShuffleCAN on
Toyota’s CAN testbeds. Our evaluation results show that
ShuffleCAN can achieve not only recoverable ID anonymiza-
tion in the preservation of the frame priority but also efficient
unbiased data shuffling.

1



Fig. 1. Format of CAN frames defined in CAN 2.0A and CAN 2.0B

This paper makes the following main contributions:
• Proposal of a lightweight CAN message obfuscation

scheme by means of shuffled data payload, motivated
by the idea of moving target defense (MTD). A novel
unbiased shuffling algorithm based on combinatorial cod-
ing and lexicographic ordering is proposed to achieve
synchronized coding/decoding without exchanging infor-
mation between the sender and receivers.

• Design of a hash-chain-based error detection and recovery
mechanism that supports one-to-many communication
over CAN. Such a mechanism enhances existing error-
handling schemes specified in CAN to tolerate message
loss and ECU failure.

• Implementation and evaluation of ShuffleCAN in the real
testbed, consisting of 4 Renesas ECUs. The experimental
results show that our approach is compatible with stan-
dard CAN bus protocols and performs better than existing
schemes.

The rest of this paper is organized as follows: Section II
presents the background and related work. Section III dis-
cusses the adversary model and makes some assumptions.
Section IV shows the design rationale and provides the details
of ShuffleCAN. Section V discusses evaluation results, and
Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. CAN Bus

Controller Area Network (CAN), standardized in ISO
11898 [24], is one of the most widely deployed in-vehicle
networks. CAN is a serial, multi-master bus designed for
reliable, real-time message delivery between ECUs.

CAN Message Format: Fig. 1 shows the format of CAN
frames. The first bit of a CAN frame is an indicator of the
start of frame (SOF), followed by the arbitration field, which
contains either an 11-bit identifier (ID) defined in CAN 2.0A
or a 29-bit identifier defined in CAN 2.0B. The arbitration field
also includes a single Remote Transmission Request (RTR).
Next, the control field has a 4-bit data length code (DLC).
The data field varies from 0 to 64 bits (8 bytes), which may
contain several CAN signals. The CAN frame with a specific
CAN ID carries 2 CAN signals in this figure. Last, there are
fields for CRC and ACK.

Message Transmission: CAN frames are transmitted in
a broadcast way. All connected ECUs can listen to other

communications or write to the entire bus. CAN messages do
not identify the sender or designated receiver, only the message
ID. This violates the security design principle of complete
mediation. There is no authentication of source messages, no
mechanism to verify the integrity of a message, and no system
to verify that a node has the authority to send or receive a given
message. Furthermore, a priority-based carrier sense multiple
access (CSMA) arbitration scheme is used in case multiple
nodes try to transmit frames simultaneously. If a node tries
to transmit a frame and senses the bus is busy, it has to wait
until the bus is free. If two nodes accidentally send packets
simultaneously, the frame with the highest priority (i.e., the
smallest ID) will win the arbitration. Thus, an attacker may
easily inject frames with a small ID to launch DoS attacks.

B. Related Work
Recent research has demonstrated that attacks against the

CAN are becoming prevalent. Existing countermeasures can be
broadly classified into three categories: 1) ID randomization,
2) data protection, and 3) intrusion detection.

The goal of ID randomization is to protect CAN against
certain attack types such as spoofing. As pioneering works, IA-
CAN [15] is proposed to enable ID randomization. However,
it has no concern with data protection and multiple receivers.
Recent studies consider leveraging the idea of MTD to achieve
advanced ID protection [6], [22], [26]. A CAN ID shuffling
technique named CIST [26] is proposed. However, it only sup-
ports peer-to-peer communication, as well as the presence of a
high burden of AES encryption. CANsafe [22] defends against
DoS attacks by adjusting the priority rules for different IDs
dynamically while requiring additional hardware modification.

Another way of protection is to use their data fields for
encryption [25] or authentication [27] [11]. Lin et al. [18]
proposed a Message Authentication Code with pre-assigned
paired keys. Such schemes may require sending an additional
frame carrying MAC information or embedding authentication
in the data field, thus compressing the message capacity. Also,
Lu et al. [19] introduced a scheme named LEAP, exploiting
the security-enhanced RC4 stream cipher primitives.

In addition to the above research on CAN frames, existing
research on in-vehicle networks includes intrusion detection.
One is to study the fingerprint of the vehicle device. Each
ECU has some unique characteristics, such as voltage. Kang
et al. [9] proposed Viden, using the voltage distribution of the
ECU as its specific fingerprint. Another approach is to use
deep learning schemes such as RNN and LSTM [16].

To summarize, ShuffleCAN differs in that we leverage
the idea of MTD to shuffle data bits rather than the ID
field only. We believe that traditional encryption is inefficient
because many bits in CAN messages do not carry any useful
information, and we propose a shuffling scheme based on
combinatorial mathematical coding and decoding to improve
efficiency.

III. ADVERSARY MODEL AND ASSUMPTIONS

We assume that the adversary is capable of accessing the
CAN bus via numerous attack vectors. Through physical
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(a) Fuzzy attack
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(c) Masquerade attack
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Fig. 2. Three main attack scenarios on the CAN, including fuzzy, replay, and
masquerade attacks.

access and remote access, such as plugging into On-Board
Diagnostics II (OBD-II) [7], hacking into a connected ECU
via Bluetooth or Wi-Fi [20], an attacker can eavesdrop on CAN
message transmitted through CAN, compromise a specific
ECU, or inject forged CAN message into the bus. Through
USB or Wi-Fi access, the adversary can compromise and
manipulate non-critical ECUs such as infotainment units to
gain control of the CAN and send arbitrary frames to confuse
the communication.

Based on the attack vectors mentioned above, we broadly
classify the CAN attacks into three categories: fuzzy attack,
replay attack, and masquerade attack. As shown in Fig. 2(a),
a fuzzy attack injects fake messages of random ID and payload
to infer the control domain and parsing format of related
IDs and data. Replay attack in Fig. 2(b) requires that the
adversary first records CAN messages and re-sends them later.
Fig. 2(c) illustrates the idea of a masquerade attack, which
requires compromising two ECUs at least. This attack needs
to suspend the legitimate ECU using a weak attack to prevent
the ECU from sending frames and then use a strong attack
to compromise another ECU to send specific frames, e.g., the
frames that the last corrupted ECU would have sent.

In addition, we assume that each ECU pre-shares long-term
symmetric keys matching the ID with other ECUs. To the best
of our knowledge, this is the mechanism used by most security
protection schemes for CAN bus [15] [26] [25] [21] [14]. In
the work of [25] [21], they assume that each ECU stores the
corresponding long-term symmetric keys individually, while
the gateway ECU stores all the keys matching the ECU. Here
we do not need a gateway ECU for multiple session key
distributions; instead, we deploy the authentication scheme to
each ECU entity and bind it to its IDs. All symmetric keys
are configured and written to the ECU at assembly time, and
it is assumed that this storage will not be compromised by the
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Fig. 3. Overall workflow of ShuffleCAN system

adversary.

IV. SHUFFLECAN DESIGN

In this section, we detail several parts of ShuffleCAN,
including 1) the session initialization and update process, 2)
how IDs are randomly anonymized, 3) the dynamic bit position
shuffling scheme based on combinatorial mathematics, and 4)
how error recovery is performed if necessary.

A. System Overview

Fig. 3 shows the overall workflow of the proposed
ShuffleCAN system. Before transmitting any CAN frame, the
sender determines whether to start a new session. If so, the
sender will broadcast a session frame to receivers. In the
session, all CAN frames are dynamically translated into a
special “dialect” that is only known between the sender and
the receiver(s). In particular, the ID field of the frame is
anonymized by ID Anonymizing Module (IAM), and the
data field is shuffled by Data Shuffling Module (DSM).
When the “dialect” frame is received by receivers as they
expect, the receivers use DSM to restore the data content
into the original format, and then feed into the Integrity
Check Module (ICM) for counterfeit detection. This module
includes the existing fault confinement mechanism defined in
the standard of CAN protocols.

B. Session Initialization

The goal of session initialization is to establish a session
key between a sender and the receiver(s), as well as share
session parameters. The session protocol is one-way, meaning
that only the sender broadcasts session frames. Similar to
existing works such as [15], we assume that every frame IDi

is associated with a unique secret key ki as mentioned in
Section III. For instance, ECU1 is designed to receive ID2

and ID3 both sent by ECU2, and ID4 sent by ECU3. Thus,
both ECU1 and ECU2 should know k2 and k3 associated to
ID2 and ID3, respectively. ECU1 and ECU3 need to know
the key k4 for communication.

To start a session, the sender first broadcasts a session frame
shown in Fig. 3, where ID0 denotes the origin ID; IDpre is
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the ID used in the prior session. If the upcoming session is the
first one, IDpre = ID0. FLAG includes session parameters,
including the maximum number of frames, the frequency to
update a new hash value, etc. N is a nonce generated by the
sender for each session. The MAC is calculated by Eq. (1),

MAC = f1(ID
pre, N, FLAG, ki), (1)

where f1 is a keyed hash function.
Upon receiving the session frame, the receiver interested

in ID0 frames uses the same equation above with the carry-
on values of N and IDpre, coupled with the secret ki to
compute MAC. Once two values are matched, the receiver
confirms that this session frame is valid. Due to the use of
IDpre, N , and MAC fields, our protocol is protected against
spoofing replaying attacks. Otherwise, the receiver will issue
an active error flag to notify the failure of authentication. The
success of this method is based on the fact that ki will never
be shared over CAN and thus unknown to an attacker. After
that, the receiver is ready to receive the upcoming frames in
the session with the session key Kδ by Eq. (2),

Kδ = f1(N, ki, δ), (2)

where δ refers to the session number.
When reaching the maximum number of frames, the sender

will start a new session by providing new IDpre, N , MAC,
and FLAG. The lifetime of a session is generally the startup
time of vehicles. It is free for a sender to terminate a session at
any time. In order to prevent the replay attack, the consequent
session frame includes the keyed hash value of the last
anonymized ID used in the previous session rather than ID0.

C. Anonymizing and Deanonymizing Frame IDs

The goal of ID Anonymizing Module (IAM) is to prevent
the attacker from tracking important CAN frames. We adopt
the idea of the hash chain from work [15]. In each session,
the ID of every m frame (by default m = 1) changes
dynamically using a keyed hash chain. The key difference
between ShuffleCAN and work [15] is in three aspects: 1)
ShuffleCAN uses new keys derived from the session key, 2)
protects the data content, and 3) introduces a mechanism to
handle transmission errors.

Before digging into the details, we first clarify some terms:
• Session key (Kδ): Derived in the session initialization

phase and never used to anonymize frame IDs directly.
• Priority ID (PID): Static part of the anonymized ID

to preserve the priority of the original ID. Recall that
a smaller ID wins the arbitration. What we need is
PIDi < PIDj given that IDi < IDj .

• Dynamic ID (DID): Dynamic part of the anonymized ID
used only in hash-chain computation.

• Anonymous ID (AID): Truncated DID′ that is actually
transmitted over CAN along with PID.

• Anonymous Key (AKey): Derived from the session key
Kδ and changed with each data frame communication.
The formula expression is Kn

δ .
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Fig. 4. Illustration of the process of IAM for ID anonymization

On the sender side, given Kδ derived during the session
initialization, the sender calculates the hash of that key to
obtain K1

δ for the first frame as shown in Fig. 4. The original
ID (i.e., IDi) is divided into two parts: PID and DID. SAE
J1939 standard assigns the first 3 bits of the 29-bit ID for
specifying priority [15]. Then, K1

δ and AID with padding are
hashed to generate DID1 by Eq. (3),

DIDn′
= f2(AIDn−1,Kn

δ ). (3)

Since the size of DID1′ is larger than the ID field, DID1′ will
be truncated. Next, the sender concatenates PID and DID1

(i.e., truncated DID1′ ) and fills it into the ID field of the first
frame in this session. In order to avoid possible ID conflicts
when the scheme is only applied to part of ECUs, an ID pool
is used to exclude ID frames sent by normal ECUs to avoid
ID collisions. For any succeeding frame (saying, frame i), the
anonymizing key Ki

δ will be hashed from its previous key
Ki−1

δ , and the sender repeats the process to calculate AIDi

with AIDi−1 and Ki
δ . It should be noticed that if m > 1,

more than one frame will use the same anonymous key.
On the receiver side, the deanonymizing process determines

whether the received (anonymized) frame is desired. Similar
to the sender, the receiver derives the expected ID for the first
frame based on Kδ . After that, the frame filter of the receiver
is updated to accept such an ID only. Once the desired frame
is received, the same process will update the filter to accept
the consequent frames one by one in the hash chain.

Error Recovery Module (ERM): When a certain count
threshold is exceeded, the error recovery mechanism is acti-
vated to help the bus-off ECUs recalculate the anonymous ID
and parse the shuffled data. The main idea of this scheme is to
calculate the expected ID value and configure the frame filter
to receive all frames. Due to space limitations, we cannot give
too much about error recovery methods here. Actually, our

4



scheme can implement mechanisms such as reliable session
reconnection.

D. Shuffling and Restoring Data Bits

Data Shuffling Module (DSM) is designed to shuffle the
data field of each frame dynamically. The shuffling process
relies on the same key used in IAM. Again, our goal is to
achieve a lightweight permutation to change the distribution
of the original data content for any length of data “bins”.

Strawman 1: Our first attempt at data shuffling is to use
the Fisher-Yates shuffle algorithm [12]. Given the size of the
data field equals 64, the steps are as follows:

1) Pushing all bits of the data field into an array of 64
elements (indices [0, 63]);

2) Staring from the last element down to 1, picking a
random number j such that 1 ≤ j ≤ n − 1 and
exchanging the last element and element j;

3) Striking out the last element and shrinking the array to
contain the remaining elements;

4) Repeat step 2 until only one element is left in the array;
5) The sequence is a permutation of the initial elements.
It has already been proved that the Fisher-Yates algorithm

can yield an unbiased permutation within O(n) given that
the random number picked in step 2 is genuinely random.
The required storage is O(1). However, the shortcomings are
obvious: 1) the algorithm requires n total random numbers,
and 2) the algorithm cannot be accelerated in parallel. Hence,
the Fisher-Yates is not suitable for resource-constrained ECUs.

Strawman 2: To further improve efficiency, we utilize the
fact that the sequence considered in our scenario only has
values 0 or 1. Hence, a look-up table is created to store all
permutations beforehand. Each row in the table contains the
combinations of n-choose-k bits. Given the number of ‘1’ bits,
the sender and receiver(s) can look up the same row and use
the same random offset for shuffling. The advantage of this
approach is O(1) computation complexity but requires O(n!)
space. Although we can reduce the space by half by saving
up to 32 bits in the table, the required space is still too large.

Final Design: Due to the space complexity, the look-up
table approach does not suit resource-constrained ECUs. If
all combinations can be arranged in a special order, there
is no need to save. Motivated by this, we adopt the tool of
combinatorial coding and lexicographic ordering proposed in
[17]. All possible combinations are organized into a lexico-
graphic order implying a ranking from smallest to largest,
while the combinatorial encoding generates an index for
the selected item in the order, and the decoding part is to
produce the corresponding selection of items. With this design,
ShuffleCAN can achieve unbiased data shuffling with both
small computation and space overhead.

We first present the encoding-decoding algorithm and pro-
pose a shuffle scheme by the introduction of AKey. Given a
bit string s with a length of N . The following formula denotes
an ascending array:

Is = [Is(1), ..., Is(K)], (4)

Algorithm 1: Encode Function
Input: Ordered Is, N, K
Output: indexs

1 if Is[0] < 0 or len(Is) > N then
2 error;
3 end
4 index← 0;
5 for k ← 1 to K do
6 n← Is(k);
7 if n ≥ k then
8 indexs ← indexs +

(
n
k

)
9 end

10 end

where K represents the number of ‘1’ in the string, and Is(i)
indicates the position of the ith ‘1’ bit with i ∈ [1,K] and
Is(k) ∈ [0, N−1]. Eq. (5) converts the string s into an indexs

in the lexicographic order of combinations of N choose K:

indexs =

K∑
k=1

(
Is(k)

k

)
. (5)

Alg. 1 shows the encoding process, i.e., mapping a sequence
to an index.

The decoder reverses the combined index indexs to the
string s. Alg. 2 shows the decoding process. We maintain
variable indexs and reduce it once a ‘1’ bit is determined.
Variables n and K represent the length of the string and the
number of ‘1’, initialized to N − 1 and the input K. In each
iteration, we compare a binomial coefficient,

(
n
K

)
, with the

current value of indexs. If indexs is greater, the K-th location
is set as ‘1’, followed by subtracting the binomial coefficient
from indexs. The process terminates either n or K reaches 0.

For example, suppose the received string s = 1001001011,
we obtain Is = [0, 3, 6, 8, 9] with K = 5 and N = 10.
Through Eq. (5), we have indexs =

(
0
1

)
+

(
3
2

)
+

(
6
3

)
+

(
8
4

)
+(

9
5

)
= 219, with the define of

(
0
1

)
= 0. To decode string s, we

repeat comparing the remaining value of indexs to
(
N−1
K

)
.

Initially, 219 is greater than
(
9
5

)
, so the 9th position of the

decoded string is ‘1’. Next, subtract
(
9
5

)
from indexs which

remains 93 now. Meanwhile, we decrease N and K by 1,
resulting in N = 8 and K = 4. Once again, 93 is greater than(
8
4

)
, so the 8th position of the string is still ‘1’. The remaining

indexs become 23, N − 1 is 7, and K− 1 is 3. This time 23,
is smaller than

(
7
3

)
, which means the 7th position is ‘0’. The

above procedure is repeated until indexs = 0.
With encoding and decoding algorithms, we reuse the

derived AKey. The workflow of the sender is as follows: with
the original data as an input, the sender generates the indexs

using Alg. 1. Next, indexs is added by Kn
δ :

index′
s = (indexs +Kn

δ ) mod

(
N

K

)
, (6)

yielding a new index. Then, the sender uses Alg. 2 to decode
index′

s, gets the shuffled data, and broadcasts it over the
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Algorithm 2: Decode Function
Input: indexs, N, K
Output: Is

1 if indexs < 0 or indexs ≥
(
n
k

)
then

2 error;
3 end
4 for n← N − 1 to 0 do
5 node← 0;
6 if n ≥ K then
7 node←

(
n
k

)
;

8 end
9 if indexs ≥ node then

10 Is[K]← n;
11 if K ≤ 1 then
12 break;
13 end
14 K ← K − 1;
15 indexs ← indexs − node;
16 end
17 end

CAN. When receiving such a frame, the receiver encodes its
data field into an index (saying, index′

s), subtracts Kn
δ , and

decodes it for the original data. All binomial coefficients, i.e.,
values that are used in the coding process, can be calculated
in advance and stored in a table. In other words, we need to
save an array of length

∑64
i=1 i = 2, 080 in advance to ensure

timeliness.
Integrity Check Module (ICM): To check the integrity of

shuffled data, we reuse the CRC field of the CAN. By design,
the CRC field contains the checksum of original data rather
than the shuffled. An adversary who does not know the key
and shuffling sequence is less likely to inject valid frames.

V. EVALUATION OF SHUFFLECAN

In this section, we implemented and evaluated ShuffleCAN
on a real testbed by answering the following questions:

Q1: Can ShuffleCAN improve real performance and reduce
overhead compared to the state-of-the-art systems?

Q2: Whether the proposed shuffling scheme is effective in
increasing the degree of data confusion?

Q3: What attacks can be defended if the vehicle is equipped
with the ShuffleCAN?

A. Implementation and Experiment Setup

As shown in Fig. 5, we implemented a prototype of
ShuffleCAN on PASTA, an open-source automotive security
testbed developed by TOYOTA. PASTA provides a CAN
onboard network using real ECUs/CGWs. Each ECU uses
Renesas’s RX63N microcontroller with 2MB ROM, sufficient
for storing our lexicographic encoding tables. To modify the
functionality of each ECU, we need to reprogram the firmware
using the C language and flash it through an RS-232C port.
PASTA simulates normal vehicle driving and assistance func-
tions through three ECUs (including a powertrain, chassis,

Fig. 5. Experiment setup in Toyota’s PASTA testbed

and body) and a gateway ECU to forward CAN messages.
Messages communicated over the CAN bus involve 45 CAN
IDs, each with a corresponding transmit cycle and data parsing
format. All messages are periodic, with periods ranging from
10 ms to 500 ms. The hash function used in the calculation is
SHA-1. We successfully deployed our approach on the testbed
to protect all four ECUs. After the deployment, all existing
vehicle functions work properly.

B. Evaluation of Run-time Performance

The first evaluation metric for the proposed system is
the overall run-time overhead. This answers Q1: how is
ShuffleCAN compared to well-known shuffling algorithms
and industrial standard block ciphers on real performance?
We compared ShuffleCAN to six representative algorithms,
namely Fisher-Yates, AES-128, RC4, BlowFish, SM4, and
SPECK. AES algorithm encrypts data in CIST [26] and LEAP
[19] chooses RC4 stream cipher for lightweight encryption.
The source of the data is randomly generated, and the number
of frames exceeds 80,000. Instead of using standard encryp-
tion codes, we rely on OpenSSL to encrypt/decrypt data for
some schemes (such as AES). We choose OpenSSL over
other potentially faster hardware-based solutions to ensure
comparability. ShuffleCAN provides a purely software-based
solution to achieve shuffling without hardware overhead. If
a hardware-based solution is used, the corresponding device
must be paired for ECUs. In addition to the traditional encryp-
tion scheme, we choose IoT-level symmetric encryption for
comparison. SPECK is designed to meet the need for secure,
flexible, and analyzable lightweight block ciphers. It offers
excellent performance on hardware and software platforms and
is flexible to implement on a given platform [3].

Table I shows the data processing time and memory usage
for different shuffling and encryption schemes. It is seen that
ShuffleCAN is 55× faster and 118× faster for data shuffling
and restoring than Fisher-Yates. The look-up table shuffle
failed due to excessive memory. Compared to industrial block
ciphers, ShuffleCAN outperforms AES-128 by 2.74× and 6×
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TABLE I
COMPARISON OF DATA PROCESSING TIME, VMSIZE AND VMRSS OF

DIFFERENT SHUFFLING AND ENCRYPTION SCHEMES

Scheme Sender
(ns)

Receiver
(ns)

VMSize
(kb)

VMRSS
(kb)

ShuffleCAN 26 12 2528 612
Fisher-Yates 1428 1425 2496 580

AES-128 71 72 10588 7676
RC4 35 41 5572 1424

BlowFish 107 102 10588 7444
SM4 298 300 10588 7444

SPECK 32 35 2496 572
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Fig. 6. Comparison of average entropy and standard deviation of consecutive
data frames and different CAN-ID data frames before and after shuffling

on the sender and receiver sides. In addition, ShuffleCAN
is 4.1× and 8.5× faster than Blowfish and 11.4× and 25×
faster than SM4. Even compared to the IoT-level SPECK
algorithm and lightweight RC4 encryption, ShuffleCAN has
a corresponding time advantage, being 1.23× and 2.91× and
1.34× and 3.41× faster. The time advantage of ShuffleCAN
over these schemes depends on the fact that ShuffleCAN does
not waste time on changing the data content but implements
lightweight shuffle-by-bit.

For memory footprint, we mainly measured two memory us-
ages: VMSize, referring to virtual memory size, and VMRSS,
which means virtual memory resides in physical memory.
In the right two columns of Table I, we see that shuffling
algorithms, including ours and Fisher-yates, consume less
memory than conventional encryption algorithms. Although
SPECK has a small or negligible memory advantage, it doesn’t
match ShuffleCAN in terms of time.

C. Evaluation of Randomness and Unbiasedness

The second evaluation metric is the randomness and un-
biasedness of ID anonymization and data shuffling, which
answered Q2 and Q3 experimentally. Here our metrics are the
entropy of data and the unbiasedness of the anonymous key
as well as ID. The entropy reflects the degree of confusion by
ShuffleCAN, which answers Q2. Meanwhile, unbiasedness is
used to indicate whether ShuffleCAN can resist attacks, etc.,
so as to answer Q3.

Since the shuffling process cannot capture specific bit
changes, we use the entropy of the bit string instead. The CAN

messages used to compare are from the real vehicle ECUs.
Fig. 6 shows the comparison of the average entropy values
and standard deviations of consecutive CAN data frames(e.g.,
total) and data frames after ID classification(e.g., ID = 0x039,
0x091, 0x17c, 0x1aa) before and after shuffling. The four
IDs are selected randomly. Here we have quoted BiEntropy
to calculate the entropy, which fluctuates between 0 and 1,
with closer to 1 meaning more disordered. BiEntropy is based
upon a weighted average of the Shannon Entropies of all, but
the last binary derivative of the string [10]. For consecutive
data frames, the shuffled bit string has a significant entropy
improvement along with a smaller standard deviation, while
for different IDs, the results are not exactly the same: for
bit string frames with low original entropy, the shuffling
scheme has a better effect, and for data where the original
entropy is already large, shuffling can also bring some entropy
improvement.

Another randomness metric evaluates ShuffleCAN’s per-
formance of anonymous. We use NIST test suits to assess
anonymizing key(AKey) and anonymous ID(AID). NIST test
suits are statistical test suites for random and pseudorandom
number generators for cryptographic applications [23]. Once
the test result is P-Value ≥ 0.01, the sequence is supposed to
be random. We prepare a real vehicle data chain of lengths
over 10 million for each test. Five test results are shown in
Table II but all sixteen tests are passed.

D. Comparison with Existing Schemes

This subsection answers Q1 through theoretical analysis.
Table III shows the comparison of ShuffleCAN and other
state-of-the-art approaches including IA-CAN [15], CIST [26],
DAVA [6], and LEAP [19]. While ShuffleCAN and CIST use
MTD to achieve ID randomization, other schemes are either
not anonymous or consume resources. Similarly, whether
data is protected is another important attribute, and we
experimentally confirmed that ShuffleCAN can achieve higher
efficiency than encryption. Considering the broadcast nature of
CAN, supporting one-to-many communication, i.e., multiple
receiver ECUs receiving a modified frame simultaneously, is a
vital quality. No center control is also one of the significant
metrics, as a centralized ECU brings the possibility of col-
lective ECUs being compromised if it is compromised. Low
overhead also matters to measure feasibility. Our approach
supports all capabilities with lower performance overhead.

VI. CONCLUSION

In this paper, we propose a shuffle-based data obfuscation
protection scheme with id anonymity, ShuffleCAN. We first
point out the static features by reviewing past works and then
are motivated by moving target defense(MTD). To achieve
this goal, we introduce a dynamic source as the parameter for
anonymous ID(IAM) and data shuffling(DSM). By using ID
chains, we subsequently propose corresponding error recovery
modules(ERM) to cope with ECU errors and an integrity
check module(ICM) to detect attacks such as tampering.
Moreover, a novel unbiased shuffling algorithm based on
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TABLE II
NIST TESTS FOR THE RANDOMNESS OF ANONYMIZING KEY AND ANONYMOUS ID

Test Name Anonymizing key Anonymous ID
P-Value Result P-Value Result

Frequency 0.772760 Success 0.911413 Success
BlockFrequency 0.148094 Success 0.888137 Success

Runs 0.706149 Success 0.637119 Success
FFT 0.275709 Success 0.232760 Success

Universal 0.568055 Success 0.602458 Success

TABLE III
QUALITATIVE COMPARISON OF SHUFFLECAN TO RELATED APPROACHES

ShuffleCAN IA-CAN CIST DAVA LEAP
ID

randomization ✓ ✓ ✓ ✓ ×

Data
protection ✓ × ✓ × ✓

Support
one-to-many ✓ ✓ × × ×

No center
control ✓ ✓ × ✓ ×

Low
overhead ✓ × × × ✓

combinatorial coding and lexicographic ordering is proposed
to achieve an efficient shuffling process on the resource-
constrained ECUs. We implement and evaluate ShuffleCAN on
a real testbed, and results show that ShuffleCAN can achieve
better unbiased and efficient shuffling.
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