
DFspliter: Data Flow Oriented Program
Partitioning Against Data Stitching

Attacks

Chenyu Zhao1,2(B) and Hao Han1,2(B)

1 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

{cyzhao,hhan}@nuaa.edu.cn
2 Collaborative Innovation Center of Novel Software Technology

and Industrialization, Nanjing 211106, China

Abstract. Sensitive data disclosure caused by attacks is always a serious
problem in the field of information security. It has been one of the focuses
of researchers’ attention in recent years. As defense solutions against
control-flow hijacking attacks widely deployed, an attack method target-
ing non-control data named data stitching attack was developed. It can
mount significant damage on applications but difficult to be detected or
defended since it does not change control flow of the victimized program.
For the purpose of protecting programs from data stitching attack, we
propose DFspliter, an automated program partitioning method focusing
on data flows. It can protect any C program by dividing the monolithic
program into several blocks. Each block runs in a exclusive process. If
attacks cause data leakage in a block, only the data in this block might be
stolen, while the data in other blocks will not be affected. We implement
our method in the form of an LLVM plug-in, so that software developers
can automatically complete the process with only a few compilation com-
mands. Finally, an example modeled after the real-world vulnerability is
used to show the effectiveness of our method.

Keywords: Program partitioning · Data stitching attack · Complier
plug-in · Data flow

1 Introduction

Today, it is not uncommon for applications to be attacked. The flaws in the
program itself and the bugs accidentally left will become weaknesses and bring
opportunities for attackers. In order to solve this problem, researchers have pro-
posed different solutions. Program partition is one of them. One of the examples
is that modern applications such as Google Chrome follows the multi-process
model and divide the program into different processes. So errors in one process
will not directly affect other processes. Thanks to this, more than 600 security
vulnerabilities was detected in the code of Chrome in 2014, but the damage
c© Springer Nature Switzerland AG 2021
G. Wang et al. (Eds.): SpaCCS 2020, LNCS 12382, pp. 90–103, 2021.
https://doi.org/10.1007/978-3-030-68851-6_6

DFspliter: Data Flow Oriented Program Partitioning 91

caused by these vulnerabilities is very limited [11]. However, manual program
partition will increase the difficulty of development and maintenance, and thus
increase the cost. This is not affordable for some development teams.

Among the current attack methods on applications, there is a method called
data stitching attack [4]. It is proposed under the background that it is more
and more difficult to implement an attack on the control flow. Data stitching
attack can stitch together different data flows which are not related in the orig-
inal program. After making these data flows relevant, the attacker can use the
original output in the program to obtain some sensitive data that should not
be output without modifying the control flow. Current data protection methods
are mostly focusing on control flow, so the defense effect against such attacks is
not satisfactory.

With the goal of defending against data splicing attacks, we propose an
automated program partitioning method called DFspliter. Developers do not
need to consider security when writing code. They only need to do is adding
a few commands when compiling. Our method will divide the program into
several program blocks, and different program blocks run in different process
spaces. Our partitioning method will prioritize safety, and followed by efficiency.
Once a program block is attacked, only the data in the attacked block may be
tampered with or stolen. The data in other blocks will not be affected. Because
the low data coupling between different program blocks, it will be difficult for
the attacker to calculate data that has not been leaked based on part of the
leaked data.

Main contributions of this paper are as follows:

– DFspliter will focus on the transfer of data between instructions on the basis
of the program dependency graph, and analyze this data flow. We divide the
data flows with strong correlation into the same block as much as possible,
and divide the data streams with weak correlation into different blocks as
much as possible.

– We partition the program on the function level. Considering the additional
communication overhead caused by passing parameters and other reasons
after partitioning, our method will try to reduce the communication overhead
by merging some program blocks while having no significant negative impact
on security.

– We plan to implement the proposed method in the form of LLVM Pass.
Processes communicate through pipes with well-defined interfaces, and the
original semantics of the program does not change before and after segmen-
tation.

– Our method will minimize the artificial component, users do not need to
rewrite a lot of code, only need to use LLVM to load the required Pass to auto-
matically complete the segmentation. However, considering the complexity of
pointers and environmental variables, some manual work may be required.

The rest of this paper is organized as follows. Section 2 is related works.
Section 3 is the design of our method, which introduces the program partition-
ing method proposed in this paper in two parts. Section 4 is the implementa-

92 C. Zhao and H. Han

tion, which introduces the preliminary implementation of our method based on
LLVM. Section 5 is the system verification, which shows the effect of applying a
prototype of our method to a sample program. Section 6 is conclusion.

2 Related Work

Recently, researches on program segmentation can be divided into two directions.
One direction is privilege splitting. Privileges are generally expressed as system
calls used by the program. These methods restrict the system calls that can be
used by each program block after segmentation, reducing the privilege obtained
by the attacker after a successful attack. The other direction is protecting sen-
sitive data, such as user passwords, user privacy, private keys, etc. The common
method of protecting sensitive data is separating the part that containing sen-
sitive data from the original program, with targeted protection through various
methods such as encryption and verification.

Some methods require a lot of manual operation. These tools provide runtime
analysis results of the program and interfaces required for manual segmentation.
The developer understands the privileges required by each part of the source code
according to the runtime analysis results of the program. Then use specifically
implemented interface in operating systems to achieve segmentation, such as
Wedge [1]. These methods save the workload of analysis for the developer, but
the remaining workload is still considerable. In addition, Wedge also needs to
add special primitives in the operating system to support program partitioning.
Although it is relatively easy to implement in the open source operating systems
such as Linux, there will be difficulties in implementation in systems such as
Windows. Modifying the program by developer will also request the ability of
programming, which may affect the efficiency of the modified program.

When automation level increased, program partitioning tools require devel-
opers to use comments to mark the required privileges in the source code, or
manually distinguish the privileges obtained from automatic analysis. The main
purpose of Trellis [10] is to provide different privilege for different users. Priv-
trans [2] and ProgramCutter [14] are intended to limit the set of system calls that
the program can use to avoid giving the attacker excessive privileges when the
program is attacked. All these three tools mentioned above can automatically
work based on the specific comments or the manual classification of privileges
written by the developer. These tools also include process isolation or moni-
toring. Among them, Trellis needs to add special system calls to the operating
system, and perform operations such as lifting privilege through the system call,
and monitoring program and its system call. Privtrans and ProgramCutter need
to modify a series of function calls that cross boundaries, replacing each ordinary
function call with IPC (Inter Process Communication) or RPC (Remote Proce-
dure Call). But this process cannot be completed automatically, especially for
those complex data structures defined by developers. They still need to manually
write interfaces, and tools can simplify this part of the work.

DFspliter: Data Flow Oriented Program Partitioning 93

Some tools are almost completely automatic. These tools, such as Trapp [12,
13], can automatically identify different privileges according to the calling sit-
uation of library functions, and perform the partitioning highly automatically
based on a small number of preset parameters. The effect of automatic partition-
ing may not be as good as those with manual intervention. Trapp uses IPC to
communicate, and its performance overhead is generally not obvious in the test
program. But if the split location is just in a high-frequency function call, it may
bring significant performance overhead. The main problem of automatic privilege
splitting is the difficulty to take into account the implied privilege requirements
in operating environments and configuration files, which may cause errors in
the modified program. To solve this problem, it is inevitable to add manual
interference.

Program partitioning technology in the direction of protecting sensitive data
generally relies on developers’ manual work. These methods generally needs pro-
grammers to marking the location where sensitive data is generated or where
sensitive data has died. The tool can analyze and rewrite the program according
to the annotations in the source code and the program dependency graph. Then
protect the designated sensitive data in a targeted manner. In addition, some
methods such as MPI [9] require developers to explain the main data structure.
Then the program is divided accordingly to fit the high-level design of the pro-
gram, and separate different data more naturally. Some solutions, such as Glam-
dring [5] and SeCage [8], use hardware-provided features such as Intel SGX to
rewrite programs. They have excellent defense capabilities against attacks, but
these methods are obviously hardware-related, so it may be difficult to migrate
to different hardware architectures.

Solutions that only rewrite the program itself, such as Program-mandering [7]
and PtrSplit [6], use complex methods to deal with complex parameters, espe-
cially the structure of C/C++ that contains pointers and allocates memory
through malloc. Improper handling may cause overly complex IPC or RPC
and affect the performance of the partitioned program. But the performance
problem is expected to be solved through more diversified indicators. And the
effectiveness of partitioning can be improved at the same time. Some methods
such as PtrSplit and Program-mandering only divide the program into two pro-
gram blocks and protect one of them. This may cause the protected part to be
too large in some cases, which may result in a decrease in security or operat-
ing efficiency. However, these methods are expected to be extended to multiple
partitions to make up for this defect.

3 System Design

Our method splits applications into multiple blocks at function level by infer-
ring weakly correlated data flows represented by sequences of instructions that
operate on the same data in Program Dependence Graph (PDG) [3]. Each block
will run in a separate process and function calls between blocks are achieved by
well-defined interfaces. Through separation, the compromise of one block does

94 C. Zhao and H. Han

not directly lead to the compromise of other blocks. Many modern applications
such as Chrome browser are designed in this distributed style to increase secu-
rity, but there is no automated methods to partition legacy programs based on
the separate set of data flows inferred from those programs.

The outline of our system is shown in Fig. 1. It takes the source code of a
monolithic C program as input. Firstly, it establishes PDG based on the source
program. Then it detects data flows based on PDG and calculates the parti-
tioning scheme. Finally, it modifies the input code to implement segmentation.
It is difficult to conduct a pure automated system including code analysis and
code modification, we just implemented a prototype to establishing PDG and
calculating partition scheme.

Fig. 1. System outline.

3.1 Motivation Example

First, we use a running example as follows as an example to explain data stitching
attack. It is modeled after a web server. Firstly, it loads a private key from a file
to establish HTTP connection. After receiving a connection from client, it reads
the message received and sanitizes it by calling checkInput. Then, the program
calls getFile to read the content of the file and send it to the client.

Before loading the content of the file, the program uses strcat to get the
full path. If the string reqFile has enough length to cause overflow at strcat,
the second pointer reqFile will be changed. As long as the attacker chooses a
message with appropriate length, the second pointer can point to the address
where private key privKey stored. Then the private key will be sent to the client
as a part of output. The data flow of the private key and the data flow of the
input file name has no intersection. They have no dependence on each other and
have no shared memory. But the attacker can force the reqFile point to the
private key by causing overflow with out changing the control flow.

DFspliter: Data Flow Oriented Program Partitioning 95

void getFile(char *reqFile , char *output){

char fullPath[BUFSIZE] = "/path/to/root/", output[

BUFSIZE];

strcat(fullPath , reqFile);//stack buffer overflow

result = retrieve(fullPath);

sprintf(output ,"%s:%s",reqFile ,result);

}

int server (){

char *userInput , *privKey , *result , output[BUFSIZE];

privKey = loadPrivKey("/path/to/privKey");

GetConnection(privKey , ...);//HTTPS connection using

privKey

userInput = read_socket ();

if (checkInput(userInput)) {//user input OK, parse

request

getFile(getFileName(userInput),output);

sendOut(output);

}

}

To defend against this attack, a feasible method divides the program into
two parts running in different processes. The function server is executed in one
part and the function getFile is executed in the other. Only the process that
runs server has the private key stored in it memory, so the attacker can not get
it in the other process and the security is enhanced.

However, the source code of real-world programs usually not available for
attackers. So what will be attacked are binary programs. And the attack is hard
to predict from source code alone. In this situation, we aim to provide protection
for all data flows rather than one or two of them. We analyze the program to
get sequences of instructions that operate on the same data in succession with
limited modification times. Then we partition the source program into several
blocks running in different processes and minimize the sequences of instructions
between blocks. After that, if one of those blocks is attacked, only the data used
in the victimized block may be stolen and data in other blocks which is the
majority is not affected.

3.2 Design of PDG

In the method proposed in this paper, most of the analysis and processing steps
need to be based on the PDG. Therefore, establishing the program dependency
graph according to the input code is the first step of the entire processing flow.

The program dependency graph was first proposed in 1984. It is a directed
graph that intuitively describes the data dependency and control dependency in
the program. It is the basis of many program analysis methods and code opti-
mization methods. Each point of PDG corresponds to a statement of high-level
language or an instruction in assembly language. The edge of PDG represents
the dependency between instructions or statements, which can be divided into
control dependency and data dependency. Among them, data dependency can
be divided into two cases: def-use dependency and read after write dependency.

96 C. Zhao and H. Han

If the execution of instruction I1 is determined by another instruction I2, I1
control depends on I2. If the first executed instruction I1 and the later executed
instruction I2 exchange execution sequence, the result may change, then I2 data
depends on I1.

According to the basic definition of PDG, we build nodes corresponding to
all instructions, global variables, and parameters of functions and calls in the
program.

Control dependent edges and data dependent edges are built within the func-
tion. The control dependent edge is from the jump instruction node to each
instruction node in all the basic blocks controlled by it to decide whether to exe-
cute. For the def-use dependency, if an operand of one instruction is the result of
another instruction, an edge will be built from the instruction node that provides
the result to the instruction node that uses the result. For the read-after-write
dependency, if two instructions operate on the same part of memory, an edge
will be built from the instruction node that writes the memory to the instruction
node that reads the memory.

On the basis of the definition of PDG, in order to pertinently handle function
calls, two nodes in different but related functions are divided into the following
4 cases. These dependent edges need to be built separately.

– If a function is called, build an edge from the actual parameter node to the
formal parameter node.

– If a function has a return value, build an edge from the return value in the
called function to the return value in the caller function.

– If an instruction reads a global variable, build an edge from the global variable
to the instruction.

– If an instruction writes a global variable, build an edge from the instruction
to the global variable.

After the dependency of call and return is processed as above, the return value
in the caller function will not be directly connected to the actual parameters.

3.3 Partitioning Method

The data that can be obtained by data stitching attack must be in the mem-
ory when the program runs to the location of the vulnerability. Therefore, we
divide the program into multiple blocks. Different blocks contain different sets
of functions and runs in different processes. This can reduce the data that may
be leaked when under attack, thereby improves the security of the program. In
order to defend data splicing attacks better, we should make each piece of data
to appear in as few program blocks as possible after partitioning. In addition,
the data that has been modified multiple times is generally weakly associated
with the original data, and they can be regarded as different data. We define
instruction flow as follows to represent data flow with limited modifications:

Definition 1. A set of a chosen instruction and instructions that may operate
on the same data before or after the execution of the chosen instruction with
modification times on the path less or equal than K.

DFspliter: Data Flow Oriented Program Partitioning 97

For convenience, we call an instruction flow by the name of the chosen instruc-
tion. In the definition, K is an adjustable parameter, which is used to indicate
how many times a piece of data has been modified can be regarded as completely
different data. The smaller the K, the stricter the requirement. The larger the
K, the more ambiguous the requirement. In the current prototype system, we
set K to 5.

In programs, searching for the instruction flow for each instruction as the
chosen instruction may cause greater time penalty and lots of repeated calcu-
lations. Considering that the granularity of our partitioning is at the function
level, the partitioning process mainly focuses on the instruction flow between
each pair of functions, rather than processing every instruction. Accordingly,
the instruction flow between functions can be defined as follows:

Definition 2. The instruction flow set ds(fA, fB) from function fA to function
fB is a set of instruction flows that take one of the instructions of fA that
store parameters, set arguments of call instructions, and set return values as the
chosen instruction and contain at least one instruction in fB.

For example, in the program shown in Sect. 3.1, ds(server, getFile) has the
instruction flows starting from userInput and output in server.

We then calculate the optimal partitioning based on the relevance between
blocks, the complexity of each block, and the time penalty.

Relevance. The instruction flow in the program generally has different degrees
of importance. Among them, the widely used but basically unchanged data may
be more important because it may play a controlling role or be a parameter
of multiple calculation processes. For each instruction flow x, the number of
instructions in it is defined as its influence range ir(x), which is used to describe
the importance of the instruction flow. Then the relevance R(fA, fB) of function
fA and fB can be defined as follows:

R(fA, fB) = max
i∈ds(fA,fB)

ir(i) + max
j∈ds(fB ,fA)

ir(j) (1)

In our example shown in Sect. 3.1, R(server, getFile) is eaual to ir(userInput)
because ir(userInput) is larger than ir(output) and getFile has no return
value.

Complexity. Even if the program is divided into multiple processes for exe-
cution, the program blocks that are directly attacked may still leak the data
it contains. Therefore, it is necessary to control the size of each block to pre-
vent it from leaking too much data or contains too many weaknesses when it is
attacked. We define the complexity of a program block b as C(b). To achieve a
higher automation level, we do not request programmer to provide annotation
information. That means we do not have clearly indicating where the program
has a bug or where data leakage may occur. So complexity may be the total
number of lines in source code, the number of instructions and other indicators
that make sense.

98 C. Zhao and H. Han

Time Penalty. After the source program rewritten into a multi-process pro-
gram, some function calls will be rewritten as inter-process communication
(IPC), and data required for program execution such as parameters and return
values should be passed between processes, which will cause additional time
penalty. For any function fA, define the time penalty T (fA) as the time required
to call the function through IPC. Then define the set of functions called through
IPC as G. In our method, an IPC contributes 100 times time penalty than a
byte transmitted between processes. These values are based on our test of IPC
performance under the Linux system.

Priority should be given to security during partitioning, so relevance is the
most important indicator. Complexity and time penalty are secondary indica-
tors. Define B(fA) as the block where function fA is located. Then during the
partitioning, the following expression needs to be minimized:

k1 ∗
∑

B(i)!=B(j)

R(i, j) + k2 ∗ max
k

C(k) + k3 ∗
∑

l∈G

T (l) (2)

Among them, k1, k2, and k3 are adjustable parameters, which we will deter-
mine in future work, or leave them as user-set parameters. In our example, there
is only two functions, so R(server, getFile) is the largest. Then, the two func-
tions will be divided into two blocks. And the sensitive data in server will be
separated from the vulnerable getFile.

4 Implementation

We implement the major part of our method in the form of LLVM pass under
the framework of the open source project LLVM. This section will introduce the
realization of our method described in Sect. 3 in two parts.

LLVM is a collection of modular, reusable compiler and tool chain technol-
ogy. It has a special intermediate language called LLVM IR. The front end of
LLVM is responsible for translating high-level languages into LLVM IR. The
most common front end is the compiler Clang. There are various passes in the
middle, and each pass is a specific function that can be applied to LLVM IR.
The back end is responsible for assembling LLVM IR into machine code that
can run on target machine. We implement our method as a series of passes with
a total of 2578 lines of code.

4.1 Implementation of PDG

We establish PDG based on LLVM IR and implements it in the form of an
LLVM pass. There is no strict sequence requirement for the establishment of
PDG, which basically conforms to the description in Sect. 3.2.

In the process of creating nodes, we build nodes for instructions and global
variables respectively. For call instructions in LLVM IR, We build special call
nodes and connect them with corresponding parameter trees.

DFspliter: Data Flow Oriented Program Partitioning 99

When analyzing control dependence, we use the post dominator tree built
in LLVM. When analyzing read-after-write dependence, we use alias analysis
built in LLVM to improve accuracy. When analyzing the def-use dependence,
thanks to the static single assignment (SSA) feature of LLVM that each variable
assigned as the result of an instruction can be assigned only once, where does
an operand comes from can be determined easily.

To handle inter-procedural dependence, we build parameter trees [6] instead
of a single node for every formal parameters, actual parameters, and return
values. The parameter trees include detailed information about structures, arrays
and pointers based on the type of parameters. Edges are built with nodes on
parameter trees to represent inter-procedural dependence and read-after-write
dependence.

Some call instructions in the program may call functions through function
pointers. In this situation, LLVM IR cannot determine the called function. The
analysis of function pointers is a complicated task, and we are not focusing on it
now. If this happens, our method will try to match the possible called functions
by type, and build a corresponding dependent edge for each function that meets
the conditions.

4.2 Implementation of Partitioning

In our implementation, the function nodes in PDG are colored to represent the
partitioning scheme. Each color represents a block of the modified program. We
implemented this in the form of an LLVM Pass.

First, we process the corresponding points in the PDG of the formal parame-
ters, actual parameters, and return values in the function. According to the defi-
nition of the instruction flow, the forward tracking or reverse slicing is performed
with these points as the chosen point to obtain the functions that instruction
flows can reach and instruction flows’ influence range. It should be noted that
forward tracking and reverse slicing are only performed along the data dependent
edges, and do not involve control dependent edges. These are also limited by the
number of data modification K. After that, each pair of functions is processed
and the relevance between them is calculated.

What we have implemented is a simple prototype system, without considering
the complexity of program blocks and time penalty. So only security is considered
when coloring, that is, the relevance between functions.

At the beginning of the partitioning process, all functions are located in sep-
arate program blocks. For a program with n functions, the algorithm continues
to merge the program blocks according to the relevance between the functions
until the number of program blocks does not exceed log2 n + 1. For each step of
merging, each pair of program blocks is scanned, and the sum of the relevance
between the functions located in it is calculated. Then in each step of merge,
the algorithm selects a pair of program blocks with the largest sum of relevance
and merge them into one block.

100 C. Zhao and H. Han

5 Evaluation

5.1 Validation of DFspliter

Fig. 2. Partitioning result of ssl server.

We use a C program named ssl_server as a test program (Fig. 2). Part of the
program is shown as follows. It is a vulnerable server program based on open
SSL and has a corresponding attack program ssl_client with it. ssl_server
generates a pointer ctx in the main function by calling the create_context
function, which has a wide range of influence. After that, a private key pkey
for encrypted communication is generated by calling configure_context in the
function main and stored in the memory pointed to by ctx. After everything is
ready, the main function cyclically receive messages from the client, and processes
and responds through the processUserInput function. There are vulnerabili-
ties in the processUserInput function that can be exploited by data stitching
attack. When the message length is appropriate, the private key may be sent
back to the client as a message.

void configure_context(SSL_CTX *ctx){

/* Generate private key pkey */

SSL_CTX_use_PrivateKey(ctx , pkey);

}

char buf [1024];

char* processUserInput (char *input , int size){

char *yourName , greeting [16] = "Welcome ";

yourName = getUserName(input);

strcat(greeting , yourName);

sprintf(buf , "%s: %s", yourName , greeting);

return buf;

}

int main(int argc , char **argv){

/* Prepare for connection */

DFspliter: Data Flow Oriented Program Partitioning 101

ctx = create_context ();

configure_context(ctx);

sock = create_socket (4433);

while (1) {

/* Accept a request and start connection */

bytes = SSL_read(ssl , buf , sizeof(buf));

char *output = processUserInput (buf , bytes);

SSL_write(ssl , output , strlen(output));

/* End connection */

}

/* Clean up */

}

We use the prototype described in Sect. 4 to strengthen ssl_server, and
rewrite the source program into a multi-process program according to the par-
titioning result. The program is partitioned into 4 blocks that run in different
processes and communicate with each other through named pipes. First 3 blocks
contains create_context, processUserInput and getUserName respectively.
The function containing the sensitive data pkey, including the main function, is
located in the fourth block. Since there is no pkey stored in the process where
the vulnerable processUserInput is located, the private key can no longer be
obtained through data stitching attacks, and the security of the program is
improved.

5.2 Performance Overhead

We use another C program to test the communication overhead after parti-
tioning. Part of this program is shown as follows. This program has a function
named refuse, which is called by main when the input is illegal. What the func-
tion refuse does is opening a file, writing a constant string into the file and
closing the file. To test the overhead, we change the type and the number of
parameters of refuse and rewrite the program into a 2-process program which
divides the two functions into different processes. We always provide an illegal
input and let main calls refuse 1000 times. The results are shown in Table 1.

void refuse(int y){// Parameter may be changed

f=fopen("/* File name */","w");

fprintf(f,"do not support argument y=%d !\n",y);

fclose(f);

return;

}

int main(int argc ,char** argv){

int x,y,z;

scanf("%d%d" ,&x,&y);

for(int i=0;i <1000;++i)

if(y>=0){/* Do something */}

else refuse(y);

return 0;

}

102 C. Zhao and H. Han

Table 1. Communication Overhead of different parameters

Parameters
type in C

Number of
parameters

Time spent
before
partitioning
(ms)

Time spent
after
partitioning
(ms)

Communication
Overhead (%)

int 1 60.95 68.75 12.79

int* 1 58.31 69.91 19.89

int[1000] 1 58.45 87.80 50.21

int 10 56.90 80.10 40.77

Communication overhead is slightly lower than that of reading and writ-
ing files. Inter-process calls have a basic time consumption, so are parameter
transmissions. The increase in the number of bytes transferred will also bring
additional time cost, but not as much as the number of parameters. Generally,
most of the running time is spent on logic of programs rather than calling a func-
tion 1000 times, so the communication overhead is acceptable. Our approach also
tries to avoid transmissions of parameters with large number of bytes.

6 Conclusion

We designed and partially implemented a program partitioning method called
DFspliter based on LLVM. Any C language program with single block can be
automatically divided into a program consist with multiple program blocks dur-
ing the compilation process. Each block will execute in a different process and
communicates with others through well-defined interfaces. Because different pro-
cesses have different memory spaces and different data stored in them, potentially
sensitive data can be protected. When one block is attacked, it will not affect the
security of data in other blocks. Aiming at the characteristics of data stitching
attacks, our method uses data flow as the main basis for partitioning proce-
dures, and improves the pertinence of segmentation by splitting different data
flow with lower correlation into different program blocks. In order to get better
partitioning result, we used a special algorithm to perform coloring operations
based on the analysis of data flow. Finally, the input program can be changed
into a multi-process program and the security is increased.

Acknowledgements. We sincerely thank reviewers for their insightful feedback. This
work was supported in part by NSFC Award #61972200.

DFspliter: Data Flow Oriented Program Partitioning 103

References

1. Bittau, A., Marchenko, P., Handley, M., Karp, B.: Wedge: splitting applications
into reduced-privilege compartments. In: 5th USENIX Symposium on Networked
Systems Design and Implementation, pp. 309–322 (2008)

2. Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege
separation. In: 13th USENIX Security Symposium, pp. 57–72 (2004)

3. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. (TOPLAS) 9(3), 319–
349 (1987)

4. Hu, H., Chua, Z.L., Adrian, S., Saxena, P., Liang, Z.: Automatic generation of
data-oriented exploits. In: 24th USENIX Security Symposium, pp. 177–192 (2015)

5. Lind, J., et al.: Glamdring: automatic application partitioning for Intel SGX. In:
2017 USENIX Annual Technical Conference, pp. 285–298 (2017)

6. Liu, S., Tan, G., Jaeger, T.: PtrSplit: supporting general pointers in automatic
program partitioning. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2359–2371 (2017)

7. Liu, S., et al.: Program-mandering: quantitative privilege separation. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1023–1040 (2019)

8. Liu, Y., Zhou, T., Chen, K., Chen, H., Xia, Y.: Thwarting memory disclosure
with efficient hypervisor-enforced intra-domain isolation. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
1607–1619 (2015)

9. Ma, S., Zhai, J., Wang, F., Lee, K.H., Zhang, X., Xu, D.: MPI: multiple perspective
attack investigation with semantic aware execution partitioning. In: 26th USENIX
Security Symposium, pp. 1111–1128 (2017)

10. Mambretti, A., et al.: Trellis: Privilege separation for multi-user applications
made easy. In: International Symposium on Research in Attacks, Intrusions, and
Defenses, pp. 437–456 (2016)

11. Rogowski, R., Morton, M., Li, F., Monrose, F., Snow, K.Z., Polychronakis, M.:
Revisiting browser security in the modern era: New data-only attacks and defenses.
In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 366–
381 (2017)

12. Trapp, M., Rossberg, M., Schaefer, G.: Program partitioning based on static call
graph analysis for privilege separation. In: 2015 IEEE Symposium on Computers
and Communication (ISCC), pp. 613–618 (2015)

13. Trapp, M., Rossberg, M., Schaefer, G.: Automatic source code decomposition for
privilege separation. In: 2016 24th International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM), pp. 1–6 (2016)

14. Wu, Y., Sun, J., Liu, Y., Dong, J.S.: Automatically partition software into least
privilege components using dynamic data dependency analysis. In: 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 323–333 (2013)

