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Keystroke snooping is an effective way to steal sensitive information from the victims. Recent research on

acoustic emanation-based techniques has greatly improved the accessibility by non-professional adversaries.

However, these approaches either require multiple smartphones or require specific placement of the smart-

phone relative to the keyboards, which tremendously restricts the application scenarios. In this article, we

propose UltraSnoop, a training-free, transferable, and placement-agnostic scheme that manages to infer user’s

input using a single smartphone placed within the range covered by a microphone and speaker. The innova-

tion of Ultrasnoop is that we propose an ultrasonic anchor-keystroke positioning method and a Mel Frequency

Cepstrum Coefficients clustering algorithm, synthesis of which could infer the relative position between the

smartphone and the keyboard. Along with the keystroke time difference of arrival, our method could infer the

keystrokes and even gradually improve the accuracy as the snooping proceeds. Our real-world experiments

show that UltraSnoop could achieve more than 85% top-3 snooping accuracy when the smartphone is placed

within the range of 30–60 cm from the keyboard.
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1 INTRODUCTION

Snooping keystrokes (a.k.a., keystroke inference attacks) seriously threatens information security
and privacy. By launching such an attack, an adversary has an opportunity to steal sensitive in-
formation such as accounts, passwords, credit card numbers, SSNs, and confidential documents
[1, 15, 29, 30] from the victims when they are typing on a keyboard. Smartphone-based snooping
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Fig. 1. Attack scenarios of intentionally leaving phone to snoop at pub-
lic (left), and installing malicious software to snoop in a large scale
(right).

Fig. 2. Keystroke inference process.

[15, 18, 24] further eases the launching when an adversary could intentionally leave his or her own
smartphone near the victim’s keyboard. Furthermore, an attacker could spread a malicious mobile
app (e.g., in app markets) that pretends to be a normal audio playing and recording application but
stealthily collects user’s keystroke data over the Internet. He or she may affect a large volume of
smartphones and enable large-scale keystroke inference attacks as shown in Figure 1.

Existing work on keystroke snooping using smartphones could be divided into three categories:
voiceprint-based methods [1], language-model-based methods [2], and ranging-based methods
[15, 29, 30]. The voiceprint-based approaches assume that each key has a unique “fingerprint”
that could be identified through received keystroke emanations. These solutions typically rely
on supervised learning to derive an identification model from the target keyboard [1]. Since the
voiceprint of a keyboard may change over time during the usage, such solutions are not reliable
and need retraining repeatedly. Linguistic approaches assume that the sequence of typing follows
some language models, so keystrokes could be derived from the context information [2]. How-
ever, this type of methods could not be used for password inference and may fail with typos, since
the password typically does not follow any language model. As a result, linguistic approaches are
usually applied along with other techniques to improve the accuracy [7, 23].

The up-to-date work on keystroke inference mostly focuses on ranging [15, 29], which basically
uses microphones on a single or multiple smartphones to measure the time difference of arrival

(TDoA) of the acoustic emanation from different keys. Two microphones receive the same key-
stroke sound. Due to the different distances, there will be TDoA. Based on TDoA we make a single
curve with two microphones as the focus. More microphones can have more single curves. The
intersection of multiple single curves is the exact key position.

However, these solutions have a very strong assumption on the prior knowledge of the keyboard
as well as the relative position/direction of measuring smartphones to build a keyboard layout.
Eavesdrop [7] has proved that these schemes have low keystroke snooping accuracy when the
phone–keyboard relative position is unknown. To address this problem, Zhu et al. [29] proposes
a keyboard localization and reconstruction method, but the assumption on multiple smartphones
makes their method impractical. Eavesdrop exploits the language limits to identify several pilot
keys as the anchors to estimate the phone–keyboard relative position further. However, the system
depends on the known language context, which significantly limits the attack scenario. Eavesdrop
[7] leverages linguistic statistics to identify a set of pilot keys that serve as anchors for estimating
the relative position between a phone and keyboard. Nonetheless, the effectiveness of this system
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is contingent upon prior knowledge of the language context, thereby constraining its potential
attack scenarios. Yu et al. [26] eavesdropped on smartphone keyboard inputs by tracking the at-
tenuation of acoustic signals, phase changes of keystrokes, and Doppler effects received through
the smartphone’s microphone. However, the work is applicable to smartphone keyboards and re-
lies on the directional changes in the movement of the user’s fingers. Other researchers endeavored
to use WiFi [6, 13] or eye movements [4] to snoop.

However, shortcomings are still inevitable for existing work. Acoustic-emanation-based ap-
proaches suffer from environmental noises and the interference from the other keyboards. Lin-
guistic approaches require linguistic context that is not reliable for an accurate inference. Current
ranging-based solutions only work with the prior knowledge of the keyboard position and rely on
the use of multiple recording devices and specific placements of those devices. This fact greatly
limits the application scenarios. After all, an attacker could not control the target to place the
smartphone to the presumed position. Thus, none of existing techniques can be easily applied to
launch the large-scale attack scenario in Figure 1.

In this article, we propose a placement-agnostic keystroke inference method and develop a
smartphone rooted snooping system named UltraSnoop. Motivated by recent mobile phone acous-
tic sensing techniques, the system actively emits acoustic signals and passively records echoes
as well as acoustic emanations to infer keystrokes on commercial-off-the-shelf (COTS) smart-
phones. To achieve placement-agnostic keystroke inference, we introduce Virtual Phone Coor-

dinate System (VPCS) and Theoretical Keyboard Coordinate System (TKCS) to convert the
TDoA into placement-agnostic locations and infer keystrokes based on them. Initially, the TDoA
of each keystroke is extracted from recorded echoes. Subsequently, the TDoA of keystrokes are
translated into VPCS coordinates by VPCS. Finally, the VPCS coordinates undergo further pro-
cessing utilizing TKCS to obtain precise estimates of the keystrokes. A schematic representation
of this keystroke inference process can be observed in Figure 2.

The advantages of our method are in three aspects. First, the actively emitted ultrasound signal
enables distance measuring [3, 25] and finger movement/tapping tracing [21] on a single smart-
phone so as to localize a keystroke. The higher the sampling rate, the more accurate the keystroke
positioning we can achieve. Second, our method is context free and training free. Thus it is ro-
bust for password snooping and keyboard variance. Last, we adopt ultrasound-based signals that
are not perceivable. It is worth noting that the ultrasound signal will not interfere with keystroke
emanations; hence it is complementary to existing voiceprint-based approaches.

However, to achieve this, we have to overcome the following technical challenges.

• Keystroke detection and position: The active sonar suffers from multiple echoes from all
surrounding objects. How to effectively extract the keystroke and localize its position is the
first challenge.
• Positioning Accuracy: Both the hardware limits (the chips can support up to 192 kHz,

while the android system only support up to 48 kHz) and the environmental changes could
affect the localization accuracy. With these non-negligible errors, how to accurately infer
the key identity becomes the second challenge.
• Keyboard position and layout construction: Now, we consider the large scale keystroke

snooping attack, where we cannot presume the relative position of the phone and keyboard
or even the layout of the keyboard. It is another challenge to localize the keyboard and
construct the layout of the keyboard.
• Signal occlusion from hand: If the phone is placed on the right or left of the keyboard,

then we can hardly estimate the position of keystroke only with the echo due to the hand
occlusion. How to estimate the keystrokes of occluded hands becomes the last challenge.
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To solve the first challenge, we use the echo of a short-term pulse signal that is actively sent
to make a rough measurement of the keystroke. The specially modulated signal can effectively
measure the position where the keystroke occurs by an echo. Combined with the TDoA between
keystrokes reaching different microphones, we can further determine the single curve where the
keystrokes are located. Then we combine rough positioning and single curve to further determine
where the keystrokes occur.

We then managed to solve the second challenge. Along with the TDoA of keystroke sound, we
are able to identify the sound of different keystrokes. By utilizing Mel Frequency Cepstrum

Coefficients (MFCCs) [30] and the stable voiceprint, we propose a MFCC-Position Mapping

and Clustering (MPMC) algorithm to accumulatively improve the inference accuracy over the
snooping process. Furthermore, this algorithm could trace back all the previous input and thus
rectify the snooping errors.

Next, to solve the third challenge, we propose an “anchor point”–based solution to build the
coordinate system without knowing the position of the phone. We mainly chose the anchor points
as “Enter” and the “Space,” which is mainly based on the observation that these keys have distin-
guished “voiceprint” [1] that could be told apart from other keys even across different keyboards.
Then the VPCS model and TKCS model are proposed to build both the coordinate systems of the
phone and the keyboard, the combination of which enables us to obtain the relative position and
the keyboard layout.

To solve the last challenge, we observe that keystrokes could be classified into the groups by
TDoA of the same keystroke recorded with two microphones. Along with the input sequence of
unoccluded hand, we can get TOP-k result. Altogether, we can accurately snoop the keyboard
input independent of positions and keyboards.

The contributions can be summarized as follows:

• We present a transferable, training-free, and placement-agnostic keystrokes snooping sys-
tem based on a single smartphone. Our system greatly eases keyboard snooping via a pure
software method and enables large-scale keyboard snooping attacks.
• We propose two virtual coordinate systems, VPCS and TKCS. Combined with active acous-

tic sensing, the system implements placement-agnostic keystrokes snooping without any
training.
• We further develop an MFCC-Position mapping and clustering algorithm, which greatly

improve the snooping accuracy against the localization error caused by the hardware limits
and environmental interference.
• We conduct extensive real-world experiments that show our system could achieve more than

85% inference accuracy even when the smartphone’s placement is unknown in advance.

2 RELATED WORK

2.1 Keyboard Snooping Attack

The keyboard snooping attacks has long been noticed and researched. Initially, Asonov et al. [1]
notice that each button has its own distinctive voiceprint. Thus, they developed a voiceprint-based
supervised learning algorithm to identify a single key. An improved algorithm was proposed by
Berger et al. [2]. Different from the first algorithm, in the training stage, not only is the single but-
ton considered, but also the front and rear keystrokes are all used as the training input. Zhuang
et al. [30] present a improved algorithm based on the previous method by considering that the
candidate range is too large in the previous algorithm. Zhu et al. [29] adopts the TDoA of the
keystroke from double microphones on the same mobile phone and combines the position of
the three hyperbolas of the mobile phone to locate of the keystroke. Another TDoA-based method
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is proposed by Liu et al. [15]. It assumes that the relative distance between the keyboard and the
smartphone is known and classifies the similar TDoAs into the same key cluster. Among the can-
didate keys in the same key cluster, it distinguishes them with feature of voiceprint. Eavesdrop
[7] combined the linguistic model and TDoA to estimate the phone-keyboard relative position and
propose a Position free Keystroke Monitoring scheme based on MFCC and k-means clustering.
LOL [20] presents an angle-based sampling method to collect keystroke acoustic signals for train-
ing and enables small angular position-independent keystroke inference. Mixed CNN and RNN [8]
classifies keystrokes from audio and motion sensor data of multiple phones based on Mixed Con-
volutional and Recurrent Neural Networks. Yu et al. [26] used the attenuation of acoustic signals
received by the microphone of a smartphone to locate the user’s keystroke fingers and tracked
finger movements through phase shifts and Doppler effects to reduce errors in keystroke location
based on acoustic signal attenuation.

2.2 Acoustic Signal-based Applications

Acoustic signal recently has been widely applied in developing new mobile applications. Wang
et al. developed a UbiK [24] based on acoustic signals that enables the keystroke input on a
printed keyboard on a paper. It achieves 95% of localization accuracy across a variety of settings.
Wang et al. [25] developed a phase-based gesture tracking system and achieved millimeter-level
accuracy and less than 15.5-ms latency. Chen et al. [3] developed an acoustic device-free hand
tracking system. Their error of tracking the movement can be within 0 to 4 cm. Tan et al. [22]
implement a lip-reading system through ultrasonic sensing using the reflection of ultrasonic from
mouth. Their average accuracy around 74.8% with the number of words ranging from 1 to 6. Zhou
et al. [28] utilized acoustic signal to do user identification and authentication. Zhang et al. [27]
developed a system called SoundTrak to turn the phone into an active sound signal to track three-
dimensional (3D) gestures, and Ling et al. [14] identify some gestures by acoustic signals. Mao et al.
[16] developed a high-precision acoustic motion tracking system, CAT. Huang et al. [9] used the
acoustic signal to get the current position. Lee et al. [12] used chirp for communication between
smartphones.

2.3 Summary of the Related Work and Our Difference

Inspired by the predecessors, our work has major differences from these works and makes up
for some of their drawbacks. The accuracy of voiceprint-based research is not practical, as the
voiceprint could vary from different keyboards. Context-based research is unable to recognize ran-
dom characters due to language restrictions, while the current ranging-based research relies on
the relative position of smartphones and keyboards. Inspired by recent progress of active acous-
tic signal ranging and tracing technology [3, 25], we explore the active ultrasonic ranging-based
method to solve the keyboard positioning problem and infer the keystroke accurately. Compared
with existing techniques, our proposed UltraSnoop achieves placement-agnostic keyboard snoop-
ing with a single device, thereby addressing the issue of decreased performance in distance-based
approaches due to changes in relative positioning of phone and keyboards. Our method is training
free and does not necessitate pre-training, rendering it appropriate for large-scale attack scenarios.
Furthermore, our approach is transferable and more facilely applicable to a variety of devices than
voiceprint-based solutions.

3 MODELS AND PRELIMINARIES

In this section, we introduce the attack models followed by technical preliminaries.
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Fig. 3. The structure of a smart-
phone equipped with top and
bottom microphones.

Fig. 4. Time sequence of events
within a cycle.

Fig. 5. Geometric model ofVPCS .

3.1 Adversary Model

We assume a scenario where an attacker can approach the victim’s computer and be able to place
his or her own mobile device (e.g., smartphone or tablet) near the keyboard used by the victim
or install a malicious app on victim’s phone. To launch a successful keystroke snooping attack,
the device should be able to play and record acoustic signals in the sampling rate of 48 kHz and
beyond, which is available on most modern smartphones. There are two representative scenarios:
(1) The attacker places the mobile device on a public desk shared with the victim, for example in
a library, and (2) the attacker accesses the microphones of the victim phone through a malicious
software. The software has been working in the background when the victim places the phone
next to a keyboard, so that the attacker can retrieve the recorded data over the Internet.

In addition, we assume that the attacker knows all the possible keyboard layouts. Then the
attacker can build a set of theoretical models that contain the spacing and direction information
of each key for victim’s keyboard. After snooping two or more keys including the anchor nodes,
the attacker can calculate the keyboard position and layout.

3.2 Keystroke Localization Model

A large volume of the COTS smartphones support stereo recording and playback. Most of them
are equipped with two unfiltered microphones and a speaker, e.g., 360 N6 Pro, Samsung GALAXY
S6. Based on such COTS smartphones, we propose ultrasound-based keystroke detection and lo-
calization algorithm.

The basic idea is as follows. As is shown in Figure 3, a smartphone is equipped with two un-
filtered microphones at the top and bottom of the phone as well as a speaker for playing preset
acoustic signals. We choose to use unfiltered microphones, because a filtered microphone is de-
signed to eliminate unnecessary signals. In that case, we cannot receive samples that include both
the short acoustic pulse and its echoes. The distance between two microphones is a constant, for
the phone we used is 15.5 cm.

Figure 4 shows the timeline graph of our system. We send a short acoustic pulse at t0. The nearest
microphone receives the direct arrived short acoustic pulse at t1, and the other microphone receives
the directly pulse at t2. After a short period of time two microphones will receive the echo of
the pulse at t3 and t4. We can use the time interval between the pulse and its received echoes to
measure the distance from the speaker to the place where the echo is generated. As we can see in
Figure 5, the length of this distance is from H to M1 or M2. Figure 6 shows the relative position
between the smartphone and the location of the pressed key. H represents the finger pressing
the key, and S represents the speaker emitting the pulse. M1 represents the bottom microphone.
M2 represents the top microphone, which is often used as a noise-canceling microphone. Both
microphones will record the pulse and the echo simultaneously. It should be noticed that this
model is affected by multi-path reflections, and we have designed a mechanism to address this
problem (see Section 4.2).
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Fig. 6. Localization scenario. Fig. 7. The relative position “An-
chor point”.

Fig. 8. Geometric model of TKCS.

3.2.1 Virtual Phone Coordination System. Figure 5 shows the geometric model of the relative
position between the smartphone and the location of a keystroke. We put the four objects into
a virtual coordinate system called VPCS and assign each object a virtual coordinate. The origin
is the speaker at S (0, 0). To simplify our discussion, we align the Y axis with the line between
two microphones M1 and M2. X axis is a line across the point S and is perpendicular to Y axis.
The bottom microphone M1 (0,−L1) and the top microphone M2 (0,L2). L1 and L2 are the distances
between the two microphones and the speaker, respectively. The keystroke hand H (x ,y). The
paths of the echo from the hand to two microphones equal to dSH M1 = dSH + dH M1 and dSH M2 =
dSH + dH M2 , which can be computed as follows:

dSH M1 = (t3 − t0)c = (t3 − t1)c + dSM1 , (1)

dSH M2 = (t4 − t0)c = (t4 − t2)c + dSM2 , (2)

where the distance between two microphones (M1 and M2) and speaker S are represented by dSM1

and dSM2 , while c stands for the speed of sound in the air.
We can solve these equations in the virtual coordinate system shown in Figure 5,

4x2

d2
1 − L2

1

+
4(y + L1/2)2

d2
1

= 1, (3)

4x2

d2
2 − L2

2

+
4(y − L2/2)2

d2
2

= 1. (4)

Then we can get following equation:

x =

√
(d2

2 − L2
2) (d2

1 − L2
1) ((L1 + L2)2 − (d2 − d1)2)

2(d2L1 + d1L2)
, (5)

y =
d1L

2
2 − d2L12 − d2

2d1 + d
2
1d2

2(d2L1 + d1L2)
, (6)

where d1 means dSH M1 and d2 means dSH M2 .

3.2.2 Theoretical Keyboard Coordinate System. If our positioning method has a high precision,
then we can recover the keystroke by the method of fitting the coordinates of the keystroke in
theTKCS with the keyboard model, which we used to steal. However, with the support of current
hardware, the error of our positioning method has an error of 3 to 7 points, and each point repre-
sents approximately 7 mm. So for each of our measured keystroke positions, the actual position of
the keystroke is the intersection of the two circles centered on two microphones. The inner radius
of the circle is the measured distance minus the error, and the outer radius is the measurement
distance plus the error.
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ALGORITHM 1: Anchor Detection

Input: A set of keystrokes clustering in VPCS.
Output: Index of Anchor point

1: Put the keystrokes into a high-pass filter and split it into equal segments. Extract the tapping
peak of ever keystrokes sample .

2: for i = 1; i <= lenдth(sample ); i + + do

3: x ← sample (i )
4: The energy accumulation for each sample is calculated through a sliding window with a

window value of W(0.002 ∗ FS). And normalize it.
5: end for

6: Calculate the energy of each peak. Select the top − k samples Loc while having a maximum
total energy and a long duration of the maximum peak of the samples.

7: Divid Loc into multiple groups
(Loc_Anchor1 & Loc_Anchor2) using the K −mean algorithm and related position.

8: for i = 1; i <= lenдth(sample ); i + + do

9: Calculate the Euclidean distance (ED) between the current sample and the average of
Loc_Anchor1 (or Loc_Anchor2).

10: a ← averaдe (sample (Loc_Anchor1))

11: EDS ←
(∑n

j=1
�
�
�
aj − samplei, j

�
�
�

p
) 1

p

12: if EDS ≤ Threhold then

13: Add samplei into Loc_Anchor1.
14: end if

15: Also do the same for anchor “Anchor2”.
16: end for

17: return Loc_Anchor1 & Loc_Anchor2

Thus, we propose another way to find the positioning coordinates to the keyboard. We noticed
that the keys “Enter,’“Space,” and “Shift” have special locations, unique stroke energy features, and
especially “voiceprints,” which allow us to first distinguish them from other keystrokes. In such a
way, we build a coordinate system of the theoretical keyboard that provides every key’s theoretical
location by using echo of short acoustic pulse and MFCCs. These anchor nodes are placed at the
edge of the keyboard and have special sound profiles, since these keystrokes are generated by the
two or three key axes. The keys “Enter” and “Space” are frequently presented in a sentence or at
the end of a sentence. For the “Shift key,” we usually press it one or more times, when switching
input methods or at the beginning of the input. As such, we follow Algorithm 1 to find the features
of specific keystroke as “anchor points” through their sound contours, energy, and voiceprints and
get the location by using echo. The notation description of Algorithm 1 is shown in Table 1. Note
that we do not need to identify all anchor points in keystrokes but to pick some of them with high
confidence.

Figure 7 is the schematic diagram of the mutual positional relationship between each key and
two anchor points on the keyboard. A represents one anchor point, i.e., “Space,” and B represents
the other anchor point, i.e., “Enter.” Q represents a pressed key on the keyboard. We can put them
into a new virtual coordinate system called TKCS shown in Figure 8. The X axis is aligned to the
“Space” bar. The Y axis is aligned to the “Enter” and is perpendicular to X axis. The “Space” is on
the X axis located at A(x0, 0). The key “Enter” is on the Y axis located at B (0,y0). Then we can see
that the key is located atQ (x1,y1). All the parameters of x0,y0,x1,y1 can be obtained when we get
the model of the keyboard.
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Table 1. Notation Related to Algorithm 1

Notation Description

sample A set of keystrokes
W The step size of the sliding window
FS Sampling rate of keystrokes
Loc Mapping position of keystrokes
Loc_Anchor1 The first divided anchor group
Loc_Anchor2 The Second divided anchor group
EDS Euclidean distance from sample to an anchor group
Threhold Empirically set thresholds

3.2.3 Coordinate System Transformation. After calculating the coordinate system of VPCS via
Algorithm 1, we get two clusters with each associated to an anchor point. Based on these clusters,
we then convert VPCS into TKCS . First, we know that the key “Space” is a long bar. Since we
assume the model of the keyboard is known in advance, we can compute the vertical distance L of
the “Enter” to the line that is passing through the “Space” in the following formula:

yS = k × xS + b,

�
�k × xE + (−1) × yE + b��√

1 + k2
= L.

(7)

Here (xE ,yE ) is the center point of the “Enter” cluster, and (xS ,yS ) is the center point of the “Space”
cluster.k is the ramp of the straight line passing through the “Space” inVPCS , andb is the intercept.

By solving this equation, we find two lines that are symmetric about the line passing through
the center of the two clusters. We select a line that does not split the key cluster and designate it
as the X axis of TKCS . Then we go through the center of the “Enter” cluster to make a Y axis for
the vertical X axis.

Next, coordinate X0 and coordinate Y0 in TKCS are calculated by the vertical distance of the
remaining keystrokes to each axes. We make all coordinates in the first quadrant. At this point, if
we mistakenly used another candidate line as the X axis. Some coordinate points may be in the
TKCS , making the distance to the Enter not equal to the distance calculated in the VPCS .

We can calculate its distance, d1 and d2 between two “Anchor point,” when we calculate a key-
stroke’s coordinates of VPCS. Then we convert it into the TKCS,

(x1 − x0)2 + (y1)2 = d2
1 ,

(x1)2 + (y1 − y0)2 = d2
2 .

(8)

By solving these formula, we can get two solutions and we select the solution in first quadrant.

3.3 Factors of Affecting Accuracy

The accuracy of our system is affected by some main factors that we will analyze below.

3.3.1 Sampling Rate. In our system, we need to play the pre-edited acoustic signal and record
its echo and the keystrokes of the keyboard. When recording the acoustic signal of keystroke, the
acoustic signal digitized by an analog-to-digital converter with a fixed sampling. When playing
the acoustic signal, the acoustic signal is converted from a digital signal to an analog signal by
a digital-to-analog converter. The sampling rate limits the quality of the acoustic signal. Higher
sampling rate enables higher-quality acoustic signals. The higher-quality acoustic signals means
that we can extract the information we need from a larger amount of acoustic signals.
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Fig. 9. System overview of UltraSnoop.

Some current smart devices can already support a sampling rate of up to 192 kHz with the
development of technology and hardware. However due to the system or hardware limitations,
most smart devices generally only support a sampling rate of 48 kHz. So we use the sampling rate
used by common mobile devices, 48 kHz. At a speed of 343 m/s, the distance between two acoustic
points Δd ≈ 7.15 mm. But if using a sampling rate of 192 kHz, then the distance between the two
points can be accurate to 1. 79 mm. The distance between two point can be calculated by Δr = c

fs
,

which fs is the sampling rate.

3.3.2 Microphone. If the acoustic signal passes through a microphone containing a low-pass
filter before the signal is used by the application, then we may not get the real acoustic signal
we need. There are a large number of mobile phones with multiple microphones on the market.
But these phones are all noise-reducing microphones except the bottom microphone. The system
requires at least two microphones without low-pass filters.

3.3.3 Structure of Phone. To calculate the distance between the microphone and the location
of keystrokes, we need to solute the triangle equation in the coordinate system, VPCS. In our hy-
pothesis, we put the speaker in the middle of the two microphones to reduce the difficulty of the
hypothesis calculation. Furthermore, our assumption is predicated on the presence of two micro-
phones located at the top and bottom of the phone. While eavesdropping requires certain structural
specifications, this configuration is commonly found in mainstream commercial smartphones.

The distance between the two microphones also affects the accuracy of the measurement. The
distance of Samsung Galaxy 5s smartphone d = 15.5 cm, and the speaker is on the back of the
phone, in the middle of the two microphones. To eavesdrop on a phone, the system needs to deter-
mine the distance between the two microphones on the device. Thankfully, obtaining structural
data for all phones from the network is a straightforward process.

3.3.4 Distance between Devices and Keyboard. Any microphone and speaker have a power
range. Within this range, we are able to receive significant echoes from an object. When acous-
tic waves propagate in the medium, the acoustic energy is reduced in propagation due to beam
divergence, absorption, reflection, and scattering. The attenuation is equal to the product of the
attenuation coefficient and the length of the path. The attenuation coefficient is dependent upon
the type of material and the energy of the radiation. So we should keep the keyboard within the
ultrasonic coverage.

4 SYSTEM DESIGN

In this section, we will introduce the model and implementation details of the system in this article.
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4.1 System Overview

The basic idea of our system is to find the location of the place where the keystroke is produced
by using the short acoustic pulse signal. Our system mainly includes the following steps that are
illustrated in Figure 9:

4.1.1 Initialization. First, the system generates a pre-edited ultrasonic short acoustic pulse and
initializes all microphones and the speaker.

4.1.2 Sensing. After initializing the system, we play the pre-edited signal. Then we keep the
microphone in the recording state. From the recorded audio stream, we split the signal into two
upper and lower signal channels.

4.1.3 Detection and Segmentation. At this phase, we separate keystrokes and echoes from the
audio stream. We use filters to separate the signals into different frequency bands. We use a high-
pass filter to obtain short-time pulses from the signal and a band-pass filter to get keystrokes while
filtering out low-frequency noise.

4.1.4 TDoA Classification. When we get a piece of data containing keystrokes, we get the TDoA
of the key by comparing the signal of two channels of microphones. The keystrokes are classified
by the TDoA.

4.1.5 Position Estimation. The filtered signals contain a direct pulse from the speaker to the
microphone and several echoes reflected from other objects. We identify the desired one from the
keystroke by comparing changes in different windows.

4.1.6 Anchor Point Estimation. To find the relative location between keyboard and phone, we
introduced the “Anchor point.” Therefore, we need to extract the feature of the keystrokes from a
series of keystrokes as an “anchor point.”

4.1.7 Single-keystrokes Estimation. The TKCS is established by the relative relationship be-
tween the “anchor point” and the key. Then two coordinate systems are combined to get the mark
of the keystroke cluster.

4.1.8 Keystrokes Identified. After getting the mark of the keystroke cluster, we use the cluster
centering method to identify the keystrokes.

4.2 Signal Design and Localization

The core part of our system is the short acoustic pulse-based localization. In this subsection, we
will introduce how to use it to localize the keystrokes.

4.2.1 Acoustic Signal Generation. In our system, we design the pulse in a fixed frequency of
inaudible band (ultrasonic). At a sampling rate of 48 kHz, one period of the signal consists of 480
sampling points. The signal consists of the short acoustic pulse signals of 10 samples in every 480
samples, which is illustrated in the top graph of Figure 10. The periodic frequency of the transmit-

ted acoustic signal is F = FS

S
, where F represents the frequency of the system, FS represents the

sampling rate of recording, and S represents the number of samples of a periodic signal. There-
fore, the frequency F of our system is 100 Hz, while the detection range of our system is R ≈ c×S

2FS
,

R = 343/200 = 1.715 m. We need to pass the acoustic signal through a high-pass filter before
sending it; otherwise, the signal will be perceived by the human ear.

After a careful selection, we finally chose 21.5 kHz as our signal carrier. This acoustic signal
can be emitted by the COTS smartphone’s speaker whose sampling rate is 48 kHz and beyond. We
chose this signal becuase of its characteristics of being detected easily, as shown in Figure 10.
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Fig. 10. The signal we transmit (top).
Original signal (middle) and signal
profile (bottom). The short acous-
tic pulse will be emitted from the
speaker. The chirp and its echo will
be record by the two microphones.

Fig. 11. The signal processed
after the high-pass filter. (a)
The output of high-pass filter
and (b) its frequency response
diagram.

Fig. 12. Hilbert transform output.
Signal envelope (top). Signal (mid-
dle) and comparison of two en-
velopes (bottom).

4.2.2 Noise Cancellation. After receiving the acoustic signal stream from two microphones, we
adopt a high-pass filter to remove the background noises produced by speaking and tapping on the
keyboard. We noticed that the upper limit of the frequency of the sound produced by tapping the
mechanical keyboard is about 11 kHz. Thus, we need to design the pass frequency of the high-pass
filter to be greater than 11 kHz. We set it to 15 kHz.

The signal and its echo after the filter are illustrated in Figure 11. The top graph of Figure 11
shows a mixed signal that contains the original signal and its echo.

Then we multiply the received signal by the orthogonal signal of the short pulse. According to
the following trigonometric function, we simplify one of the paths,

cos (α ) × sin(α ) =
sin(α + α )

2
. (9)

Since we are using high-frequency signals, the high-frequency part 2 × α will become a 5 kHz
(48 kHz−21.5× 2) [5] signal at a sampling rate of 48 kHz. Then we pass the signal through a band-
pass filter centered at a frequency of 5 kHz. This operation will remove the noise interference.

The bottom of the Figure 11 shows the frequency response of the mixed signal after the received
signal is multiplied by the quadrature signal.

4.2.3 Envelope Detection. After the filtering step, although we got the short acoustic pulse and
its echo, we still had difficulty in discerning the specific arrival time of a single echo. So we first
split the signal into multiple windows. Each window contains only one short pulse period. Then
we process the acoustic signal to obtain its envelope. To simplify our step of detecting the peaks of
the echo, we use Hilbert transform to do the enveloping. Hilbert transform is commonly used in
signal processing and can be seen as passing the original signal through a filter. It can be expressed

as x̂ = H [x (t )] = 1
π

∫ ∞
−∞

x (τ )
t−τ

dτ , where x̂ = H [x (t )] is the output of Hilbert transform. We can see
that the expression of the Hilbert transform is actually the result of convolving the original signal.
This signal used to convolve is h(t ) = 1

π t
. The result of the acoustic signal we generate is shown

in Figure 10, where the Hilbert transform shows the outline of the signal.
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4.2.4 Keystroke Detection. To detect the keystroke, first, we need to detect the peaks that
correspond to the echo of an object reflection except for the maximum direct arrival peak, as there
is just one peak in our signal after the envelope. In Figure 12, the top graph shows a window data
after the envelope, and the middle graph is a partial enlargement of it. Obviously, we can see that
there is a nearest peak at 3 ms, which represents a object at a distance of about 17 cm(≈ Sv×Δt

2 ),
and then we add the distance from speaker to the microphone to calculate the complete distance.
However, the nearest can be anything, such as the edge of the keyboard or the hand of the
victim, and so on. To find where the keystrokes occur, we choose to compare the changes in the
reflected waveform before and after the keystroke to find the position, which represents where
the keystroke occurred. As shown in the third graph of Figure 12, the peak of the first wave and
the weak reflection of the second wave occur at 4 ms, which corresponds to the keystroke.

4.2.5 Distance Calculation and Transformation of Coordinates. Once we obtain the moment
when keystrokes occurred, we calculate the coordinates of the keystrokes in TKCS according to
Equations (5) and (6).

4.3 Keyboard Localization and Layout Construction

Notice that our system is not dependent on the relative position of the device and the keyboard,
which can be self-located in following steps.

4.3.1 Approximate Position Estimate. In the first phase of self-positioning, we need to estimate
the approximate position of the phone. Since we are using active signals for position measurement,
it is unavoidably limited by hand occlusion. So we roughly divide the position into the following
three types: the mobile phone is on the left, on the top, and on the right. Basically, when placing
it on the left side, our system can only measure most of the clicks in the left hand. Then, for the
right hand, we cannot use the active pulse to measure the position of the keystroke. We mainly
infer right-hand keystrokes by the TDoA and MFCC voiceprint. When the phone is on the right
side of the keyboard, the situation is similar. The difference is that in these two cases, we choose
different “anchor points.” Specifically, on the left side, we choose the “left shift key” and the “ESC.”
When we click on “ESC,” we can detect a very obvious movement. On the other side, we choose
“Space” and “Enter” as anchor points. Finally, when the phone is located above the keyboard, it is
an ideal environment for our system. In this case, we use the “Space” and the “Enter” as anchor
points. We use the system to measure the keystrokes of both hands.

4.3.2 Anchor Point Detection. After estimating the approximate location of the phone. In
recorded microphone samples containing anchor points such as “Enter” and “Space” (or the “left
shift key” and the “ESC”), through comparing the TDoA and MFCCs profile of these keystrokes,
we can find the location of these points so as to determine the location of the keyboard and smart-
phone. After converting the position of all keystrokes into the VPCS , we can rebuild the TKCS
with the anchor points we measured.

4.3.3 Relative Position Estimation. After finding anchor points, we use them as the reference to
establish TKCS . Then we convert the coordinates from the coordinate system of VPCS to TKCS
by the method described above.

4.3.4 Interference. The interference mainly comes from the following aspects: (1) the periodic
frequency, (2) the power range, and (3) the width of the peak in the envelope. The periodic fre-
quency is determined by the interval at which we send the acoustic signal. If the interval is too
large, then the recognition accuracy and real-time performance of our system decrease. By con-
trast, if the interval is too small, then the echo of the acoustic signal of the previous segment will
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easily interfere with the recognition of the latter acoustic signal. The location of the phone will
also affect the accuracy, due to the range of transmitting. We need to place the keyboard within
the range of microphone coverage and place it within the detection range R.

For these reasons, we cannot merely rely on the ultrasonic localization to identify the keystrokes.
According to our experiments, the error can be within the range of three to seven samples
(2.1–5 cm).

4.4 MFCC-Position Mapping and Clustering Algorithm

Beyond the echo-based localization, we further improve the performance by proposing an error
correction algorithm called MPMC, whose intuition is based on the observation (as shown in
Figure 13) that the position variation is distributed around the real position. Thus, we can clus-
ter and map the key with same MFCCs to the position cluster head. As is known to all, the most
common method for calculating voiceprints today is MFCCs [10, 11, 17, 19]. We basically combine
the MFCCs with the position estimated from the active acoustic sensing and derive the accurate
position by mapping their clustering heads. This algorithm consists of flowing steps.

4.4.1 Detect the Keystrokes. Once we receive the acoustic stream from microphone, we put it
into a band-pass filter to get the signal including the keystrokes. The first step is to detect the
keystrokes and find the begin of the keystrokes. It is much easier for us to slice and gather the
keystrokes using the acoustic emanation. As is shown in Figure 14, we detect the energy level of
the signal based on the accumulated signal as

A(t ) =
t+W∑
i=t

x2 (i ), (10)

where A is the signal energy. W represents the length of the windows of signal, and x (t ) is the
amplitude of the acoustic signal. Since one keystroke can be divided into three peaks, which are
touch peak, hit peak, and release peak. The whole process is over 200 ms. Among them, the energy
of the hit peak is the largest, lasting about 10 ms. Then we use this as the basis for detecting the
keystroke. Here we selectW = 5 ms as the length of the windows.

After getting a slice acoustic signal with keystrokes, we get the position of the moving object
by comparing the front and back windows of the keystrokes echo.

4.4.2 Voiceprint Calculation. When we gather a small part of location of keystrokes together,
we need to translate them into corresponding content. We calculate the voiceprint by the MFCCs
[30]. The MFCCs stand for the sound feature of the keystrokes generated by the same key, which
can be used to separate different keys from the same set of theoretical keys.

When we get location of keystrokes, we transform the coordinate ofVPCS toTKCS through the
aforementioned method. We put a certain range of keystroke points near a theoretical keyX into a
theoretical group of X . Then, according to the match-filter, the keys in a theoretical key group are
distinguished according to the MFCCs process into different key sets. We use a method similar to
the weighted average for classification. Make these points closer to the theoretical key, the greater
the weight. In the same theoretical group, we pick out the set of keys that will maximize the
weight of this theoretical group and then maximize all the weights of key groups by the following
formula:

arg max

K∑
k=1

Nk∑
i=1

W 2
k (i ), (11)
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Fig. 13. The point of the keystrokes
located.

Fig. 14. The result of keystrokes
detection.

Fig. 15. Placement of phone and
keyboard.

ALGORITHM 2: MPMC Algorithm

Input: The MFCCsm1 and coordinate A of the new keystroke, Average MFCCs M of clusters and
cluster center coordinates a, Fixed value K , k .

Output: Top − k probability of the inference
1: for i = 1;i <= k ;i + + do

2: R1[i]←
√
A2 − a[i]2

3: P1[i]← K/R1[i]
4: end for

5: for i = 1;i <= k ;i + + do

6: Pm[i]← Similarity(M[i],m1)
7: end for

8: for i = 1;i <= k ;i + + do

9: P[i]← 1 − (1 − P1[i]) × (1 − Pm[i])
10: end for

11: Top − k = sort (P )
12: return Top − k

where Nk represents the number of keystrokes in kth key set andWk represents the weight of the
ith keystrokes in the Kth key set.

4.4.3 Accumulative Error Correction. Specifically, when the input keystrokes are accumulated
to a certain amount, we will get some clusters based on MFCCs, and calculate the center of each
cluster. Note that we can traceback the inference as snooping proceed. Given a new input, we first
calculate the distance between that input and the center of clusters to get a distance probability
sequence. Then we calculate the similarity of its MFCC to the average MFCCs of the clusters
to obtain a MFCC probability sequence. Then we get the probability that the input belongs to
the clusters by combining two probability sequences. The process is shown in Algorithm 2. The
notation description of Algorithm 2 is shown in Table 2.

We can see in Figure 13 that there is a pointX at coordinates (26, 3). The center of clustersA is at
(25, 2.6) and the center of clusters S is at (27.2, 2.7). The distance betweenX and center of clusters
A or center of clusters S is almost the same. The distance from X to A is about 1.08 cm, and the
distance from X to S is 1.14 cm. We get a distance probability sequence P1 for two clusters. Then
we calculate the similarity between the MFCC of X and the average MFCCs of the two clusters
and get a MFCC probability sequence Pm for two clusters. We get a probability sequence P that
the keystroke belongs to the two clusters by combining P1 and Pm . This algorithm can obtain a
candidate sequence, Top − k , or get one output, Top − 1, by adjusting the input parameters.

Finally, we label all keystrokes through the cluster based on the coordinates of the different
keystrokes according to the the output of Algorithm 2.
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Table 2. Notation Related to Algorithm 2

Notation Description

A The coordinate of the new keystroke
m1 The MFCC of the new keystroke
M The average value of MFCC clusters
a The coordinates of clusters center
K Empirically set fixed value
k The number of clusters center
R1 Distance sequence between new keystrokes and clusters
P1 Probability sequence of new keystrokes belonging to clusters in coordinate
Pm Probability sequence of new keystrokes belonging to clusters in MFCC
P Mixed probability sequence of new keystrokes belonging to clusters

4.5 Keystroke Inference in Case of Hand Occlusion

When the phone is placed to the left (or right) side of the keyboard, one of the hands will obscure
the reflective surface of the other hand. The proposed method is only capable of measuring the
keystrokes of one hand that can reflect. With the keystroke of the other hand, we can only recover
the keystrokes by inferring.

The basic idea is that we first find different anchor nodes for different hands. Specifically, for
the right hand we use “Space” and “enter” while for the left hand we use “ESC” and “Space.” The
position of the anchor points are measured following the aforementioned method.

For those keystroke from the occluded hand, they are inferred by the following methods:

• We separate the keystrokes into different groups according to TDoA.
• In different TDoA groups, we further grouped the keystrokes according to the MFCC

voiceprint.
• Based onVPCS andTKCS , we plot the TDoA curve and determine the set of candidate keys

for each group.
• The set of candidate keys is given as the result of TOP − k and are selected for further

inference.

5 EVALUATION

In this section, we present experiment setups and results.

5.1 Experiment Setups

5.1.1 Hardware Settings. Our hardware mainly includes smartphones and keyboards The smart
device needs two high-quality microphones and a 48-kHz sampling rate speaker to emit ultrasonic
waves. In our experiments, we chose 360N 6pro as the smart device. The operating system is An-
droid 7.1.1, and the processor is Qualcomm Snapdragon 660. The phone has two microphones on
a straight line at the top and bottom edges. The distance between the two microphones is 15.5
cm. We used its built-in speaker to play pre-defined acoustic signals. Two microphones record the
keystrokes, short acoustic pulse, and their echoes. The playback sampling rate we used is 48 kHz.
The sampling rate of the recording is also 48 kHz. Due to the limitations of the current hardware of
mobile phones, we only chose 48 kHz. Although the system supports a sampling rate of 192 kHz,
the upper limit of the response frequency of the microphone and speaker is 22 kHz. Regarding
the keyboard, we chose a regular Dell keyboard and ikbc’s C104 blue switch mechanical keyboard.
The keyboard size is 443 ∗ 138 mm, with a numeric keypad.
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5.1.2 Environment Setting. We selected an open experimental environment within an area of
5 × 6 m2, full of multipath effects and background noise from air condition as well as people’s
speech.

5.2 Evaluation Criteria

Our main consideration is the accuracy of recognition. Consider whether the evaluation criteria
can help classify keystrokes of a certain key into the same category and correctly identify the key:

• Precision: Precision represents that the probability of being correctly identified the key x .
It is defined as

Px =
NT

x

NT
x + N

F
x

,

where the NT
k

means the number of being correctly identified as key X . N F
k

is the number
of being wrong to be judged to be key x .
• Recall: Recall of the key x is defined as

Rx =
NT

x

Nx
,

where NT
x is the same as above and Nx is the number of all the keystrokes of x .

• Top-k: This criterion is based on the fact that k candidates are given in our system, and the
correct probability of the candidate. It is defined as

T =

∑K
k=1 P

T ,w
k∑K

k=1 Nk

,

where PT
k

represents the number of the keystrokes that there is correct one in all the
candidate.

5.3 Experiment Design and Results

We designed several experiments to verify the feasibility and statistical performance of our system.
In the first experiment, we successfully validated the feasibility of hand perception. In the sec-

ond and fourth experiments, we respectively demonstrated the system’s ability to locate a single
keystroke and distinguish between different keystroke positions, which also implies finger posi-
tion estimation. The accuracy of anchor node detection was evaluated in the third experiment.
Last, in the last three experiments, we assessed the keystroke accuracy after coordinate system
conversion under varying scenarios.

5.3.1 Performance of Hand Tracking. First, we verified the feasibility of ultrasound-based ges-
ture localization using smartphone. We conduct an experiment to track the hand movement when
a hand was moving around the microphones. In the experiment, we first turned on the system with
no obstacles in front of the phone. After a while, a hand was placed 20 cm away, then gradually
moved away from the phone, and finally moved toward the phone.

As shown in the result of first experiment, when tracking the trajectory of the hand, the ex-
perimental results correspond with our design from 20 to 40 cm. In Figure 16, we can easily see
that there was a significant echo at 20 cm in the range of the microphone at 1 s, and it began to
diminish at 2 s. Finally, the farthest reaches 4 s, while the echo gradually weakens. Then, as the
palm approached the phone, the echo reappeared at the 20cm position at 6 s.
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Fig. 16. The trace of hand in the first experiment.

Fig. 17. The 3D echo waveform of click and top view.

5.3.2 Localization of Finger Clicks. We need to verify whether we can measure where the finger
clicks on the keyboard, because we need to determine the position of the key by recognizing the
position where the action of the finger click occurs. In the experiment, after playing the signal, we
clicked four times near the microphone and speaker about 20 cm. Figure 17 shows the results of the
click experiment. In the top view of Figure 17, there are bright spots at about 20 cm at 0.5 s, 1 s, 2.5 s,
and 3 s. We observed a significant peak change of the waveform in the waveform diagram. This is
due to the change in the size of the echo reflecting surface at this distance caused by the click action.

From this, we can see that the keystroke snooping method based on short acoustic pulse posi-
tioning is feasible. We are able to detect finger clicks and hand movements, but the echo gradually
weakens as the distance increases due to the attenuation.

5.3.3 Anchor Node Detect. The third experiment we set on the keyboard is as follows: Accord-
ing to the steps of our system, we need to pick out the anchor points first. We typed a long piece
of text on the keyboard with one hand, including a “Space” and an “Enter” key. The reason for
using one hand is mainly to avoid the situation where the hand is occluded, and the case where
the hand is occluded will be verified below. According to the algorithm we proposed above, some
of the “anchor points” will be identified.
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Fig. 18. Key A’s 3D image of echo. Fig. 19. Key L’s 3D image of echo. Fig. 20. The confusion matrix of
Keystroke Inference experiment.

Table 3. The Detection Accuracy of “Anchor Point”

Accuracy (%)
“Space” “Enter” “Shift”

top-5 top-3 top-5 top-3 top-5 top-3

volunteer 1 100 100 100 96 98 93

volunteer 2 100 100 100 98 99 95

volunteer 3 100 100 100 100 100 98

volunteer 4 100 94 98 92 98 94

volunteer 5 100 100 100 100 99 97

We verified detection accuracy of anchor points in a series of keystrokes containing “Space” and
“Enter.”

The experiments involved five volunteers using our equipment on two keyboards, a regular
Dell keyboard and ikbc’s C104 blue switch mechanical keyboard. Each volunteer typed a piece of
text of 100 characters including anchor points each time, repeating 10 times. The input contains
“Space” keystrokes, “Enter” keystrokes, and several keystrokes physically close to the select anchor
points. We give results of “Anchor point” for top-3 and top-5 by algorithm. The results are shown
in Table 3. We aggregated all the experimental results of the same volunteer to get the accuracy
rate. It is seen that the results of top-3 are almost completely correct. It is relatively easy to select 3
of 10 keys from 100 keystrokes. We first picked those objects that are at the edges of the coordinate
system and then extracted them by algorithm. However, the text we designed includes consecutive
“Space” and “Enter.” When the volunteers typed too fast, the keystrokes may overlap, the difficulty
of recognition increases, and the accuracy decreases slightly.

5.3.4 Single Keystroke Inference. Then we tested with two easy-to-distinguish keys, namely
A and L—one at the left edge of the keyboard and the other at the right edge—to further verify
the feasibility of our system. We placed the phone and keyboard on the table, with the bottom
microphone of the phone 20 cm away from the left edge of the keyboard. The ‘A’ key is 24 cm
away from the bottom microphone, and the ‘L’ key is approximately 40 cm away from the bottom
microphone. The size of those keys is a square with a side length of 12.5 mm, and the spacing
between two keys in a row is about 6.5 mm. We typed each key three times in this experiment.

According to result of the single keystroke experiment (see Figure 18) that contains the windows
of short acoustic pulse echo before and after the keystrokes, we can easily see that in the window of
key A there is a significant change of the echo near 24 cm. Similarly, there is an obvious amplitude
change of echo at the location around 40 cm, as shown in Figure 19. We also aligned the signals of
each slice and then plotted such a 3D echo map. As we can see in Figure 18 and Figure 19, there is
a gap in the graph because of the keystroke. Point A of the graph represents the value before the
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Table 4. The Accuracy of Our Experiment 4 without MPMC Correction

Accuracy (%) Y U I O P H J K L B N M

Experiment 1 69 59 60 52 60 66 50 44 46 64 56 54

Experiment 2 60 57 63 62 64 53 59 59 64 67 47 50

Experiment 3 54 55 51 57 56 51 51 49 52 43 53 43

Experiment 4 37 38 31 32 31 39 26 32 30 39 27 24

keystroke occurs. Similarly, B represents the value after the keystroke. There is an obvious change
between point A and point B, because the finger is clicked here at the location of about 24 cm. In
Figure 19, there is also an obvious change between point A and point B at the location of about
40 cm. Because of the obvious distance difference, we can easily distinguish between the two keys
without utilizing voiceprint verification.

5.3.5 Keystroke-set Inference. Next, we set up an experiment to further test the feasibility of
our system in a more realistic setting. In the experiment, we placed the phone about 20 cm from
the top left of the keyboard. We only use the right hand, click on the part of the right-hand key
(YU IOH JKLNM), and “anchor.” Each key is repeated multiple times.

In this experiment, we present the results of the confusion matrix in Figure 20. In this matrix, we
can see that each key is judged with only a small number of misjudgments, and the misjudgment
only appears in the nearby keys. So our top-3 or top-5 will be more accurate.

5.3.6 Relative Keyboard Localization. To verify the feasibility of our self-localization method,
we set up another set of experiments in which we changed the relative position between the smart-
phone and the keyboard, as shown in Figure 15. Position 4 is set in about 70 cm from the top left
of the keyboard.

In this experiment, we set four positions of phone. From Table 4, in the first three experiments
at 20 cm, we observed that position 1 is more accurate for the button on the left side. In the same
way, position 3 has a higher accuracy in positioning the button on the right side. For position 2,
the action of tapping the previous row(YU IOP ) of buttons produces a change in position relative
to the phone. Therefore, the positioning accuracy of the buttons in the previous row is high. For
position 4, when the tap is pressed, the finger is only pressed down, and there is no position change,
so the positioning effect is poor.

In position 4, because the phone is too far away from keyboard, there is no interference between
the phone and the keyboard. However, due to the attenuation of the acoustic signal, the echo be-
comes weak, and the peak position cannot be accurately identified. So we got a poor result, al-
though we can increase the identifiable range of our phone by increasing the power of the phone’s
speakers. However, the result is that in order for the signal not to interfere with the next cycle, we
need to lengthen the cycle. Longer cycles can affect our recognition efficiency. Phone–keyboard
distance and whether keystrokes require finger movement influence the accuracy of keystrokes
snooping.

The results of our method with MPMC correction is shown in Figure 21. The accuracy results
of position 2 and position 3 rise to about 80%, the accuracy of position 1 rises to about 70%, and
that for position 4 is about 50%. Moreover, the distance between the keyboard keys and the phone
varies. The system can effectively recognize keystrokes when the phone is 30–60 cm from the
keyboard.

To understand the effect of the number of keystroke on the snooping performance, we conduct
experiments with different numbers of keystrokes under positions 1 and 4. The results are shown
in Figure 22. The detection accuracy of position 1 rises with accumulation of keystrokes and
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Fig. 21. Comparison of our system with/without MFCCs. b − 1 to 4 represents the result without MFCCs,
while a − 1 to 4 represents the result with MFCCs.

Fig. 22. Accuracy with different number of keystrokes for positions 1 and 4.

eventually reaches 70% when the number of keystroke reaches 10. The accuracy of position
4 reaches 53% when the number of keystroke reaches 20. The system has a low recognition
accuracy under two positions when keystrokes are less than 10, since the center of MFCC
clusters are far from the ground truth. With the accumulation of keystrokes, the center of MFCC
clusters gradually approaches the ground truth, and the MPMC algorithm helps to correctly infer
keystrokes. The constant change of center of MFCC clusters brings fluctuating of accuracy.

5.3.7 Two-handed Inference Experiment. In the experiment, we used both hands to input the
following text multiple times: “this is an experiment,” of course, including “anchor points,” “Space,”
“Enter,” “L shift,” and “ESC.” The phone is placed on the top, left, and right. The occluded keystrokes
are inferred by TDoA and voiceprints.

Table 5 shows the results of the two-handed experiment. We see that the mostly occluded
keystrokes have lower inference accuracy. For example, (HMN ) has a lower inference accuracy
when the phone is placed on the left side of the keyboard. From Tables 4 and 5, two-handed key-
stroke inference without MPMC is less accurate than one-handed for overlapping keys (HIMNP ).
After MPMC calibration, the inference accuracy of the two-handed experiment improved
significantly.

We also evaluate the accuracy of the overall system, as shown in Table 6.

6 DISCUSSION

In this section, we discuss several limitations of UltraSnoop.
Accuracy of Location. Essentially, the accuracy of typing inference is heavily reliant on the

precision of echolocation, which in turn is constrained by the level of accuracy in signal transmis-
sion and collection. Furthermore, we employed a “voiceprint” clustering technique due to insuf-
ficient positional accuracy. By increasing the sampling rate for instance to 192 kHz, the distance
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Table 5. The Top-3 Accuracy of Two-hand Keystroke Inference

Accuracy (%) a e h i m n p r s t x

Top side 58 69 49 69 42 45 64 65 54 57 47

Left side 52 64 44 49 47 48 63 56 51 50 53

Right side 48 60 43 55 51 60 57 65 47 52 50

Top side with MPMC 64 91 64 77 49 53 73 90 65 74 70

Left side with MPMC 70 80 57 70 68 54 70 68 72 68 78

Right side with MPMC 66 72 50 78 68 72 66 77 54 71 60

Table 6. The Accuracy of Overall System

Anchor Point Detect Keystroke-set After MPMC
word

top-1 top-3 top-5

95% 55% 74.7% 74.7% 92.8% 97.3%

represented by a sample point would shrink to approximately 0.18 cm. The use of a wider frequency
also ensures minimal distortion in high-frequency signal waveforms.

Occlusion. One issue to address is that of occlusion. In real-world usage scenarios, the smart-
phone and keyboard may be separated by various complex obstructions that could significantly
impede UltraSnoop’s performance. To achieve localization, it is crucial to detect the direct wave, as
calculating the distance based on multipath echo measurements would be excessively cumbersome
and unfeasible. Hence, in future research, we plan to explore alternative methods for accurately
detecting the position of an object that is obstructed from view.

Limited Distance. Ultrasound attenuation and transmission power restrictions of smartphone
signals impose limitations on the operational range of UltraSnoop, which is restricted to within
60 cm of the keyboard. This constraint reduces its efficacy in actual attack scenarios. Our Rel-
ative Keyboard Localization experiment demonstrated suboptimal performance at distances be-
yond approximately 70 cm, as ultrasound attenuation in the air hinders the effective recognition
of keystroke peak positions. Previous research has leveraged microphone arrays for far-field sound
recording, offering a promising avenue for enhancing the applicability of our work in the future.

7 CONCLUSION

In this article, we propose a single-smartphone-based training-free keyboard snooping attack sys-
tem named UltraSnoop. The system has no strict smartphone placement requirements, which will
greatly ease large-scale keystroke snooping attacks. Basically, UltraSnoop uses a sonarlike method
that emits inaudible ultrasonic short-acoustic-pulse waveforms to perform both the detection and
the localization of the keystrokes. With only ultrasonic signals, the proposed keystrokes inference
system can achieve an accuracy of over 70%. We further propose a MFCC-position mapping and
cluster algorithm to accumulatively increase the snooping accuracy. Extensive experiments show
that our method could achieve an average accuracy of 85% for top-3 candidates. Furthermore, our
method is compatible with previous acoustic emanation-based approaches and could improve the
accuracy when working collaboratively.
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