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Abstract—Image-based indoor localization using smartphones
has become popular, leveraging visual landmarks and fingerprint
extraction for localization. Fingerprint density significantly affects
accuracy, but collecting dense, high-resolution fingerprints dur-
ing on-site surveys is labor-intensive and incurs high computa-
tion/storage costs during matching. Additionally, efficient finger-
print extraction often constrains users to specific shooting poses,
with deviations markedly reducing localization accuracy. To ad-
dress these challenges, we introduce ARGILS, an Automated Real-
time Generative Image Localization System. The key idea is to use
cross sparse sampling instead of dense sampling, generate finger-
print features for missing locations, and quickly match locations
through feature orthogonal decomposition. Cross sparse sampling
ensures full coverage of scene features and helps to generate missing
fingerprints. To maintain high localization resolution with sparse
sampling, we designed a distance-constrained generative adver-
sarial network to generate fingerprints for unsampled locations.
Additionally, we developed an orthogonal fingerprint extraction
method to decompose image features into horizontal and vertical
directions in 2D space. To improve robustness against obstacles,
we implemented a scanning localization scheme using key frame
filtering and clustering. We have implemented ARGILS and per-
formed extensive real-world evaluations. Experiment results show
that when reducing 75% site survey effort, the average location
error of ARGILS is around 2.5m in a shopping mall, 48 % higher
than state-of-the-art methods. ARGILS can also efficiently speed
up localization process, with the time consumption ranging from
0.1 to 0.3 seconds on smartphones of various configurations.

Index Terms—Image-based localization, generative adversarial
networks, mobile device.
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I. INTRODUCTION
A. Motivation

NDOOR localization is a critical component of location-

based services, which can greatly facilitate people’s daily
indoor activities [1], [2], such as smart home [3], indoor nav-
igation [4], [5] and so on. With the advent of 5G technology,
localization capabilities are expected to advance even further [6],
[7]. In large shopping malls, for example, visitors often have
difficulty finding their destination, leading to frustration and
disorientation. Indoor localization provides a solution to this
problem. The advent of smartphones has fueled the demand for
accurate indoor localization in large open spaces like shopping
malls, libraries, and theaters. Various wireless signal-based tech-
nologies, including WiFi [8], Bluetooth [9], [10], RFID [11]
and etc., have been used to explore effective indoor local-
ization. However, these methods usually rely on pre-installed
infrastructure and suffer from multi-path propagation, device
orientation, and signal reflection. Therefore, the localization
accuracy is vulnerable to complex indoor environments when the
single signal feature is used as fingerprint [12]. On the contrary,
vision-based indoor localization has emerged as a promising
technology that eliminates the need for complex infrastructure
pre-installation, which makes it more practical and scalable. It
solely relies on unique, feature-rich images captured by smart
devices to deliver robust, powerful, and cost-effective indoor lo-
calization solutions. Unlike other image-based tasks, the lighting
conditions of indoor scenes tend to be relatively stable so they
do not have much impact. Based on these advantages, we hope
to use a simple-to-deploy localization system to quickly locate
photos taken by users while ensuring a user-friendly experience.

B. Limitation of Prior Art

Vision-based indoor localization methods can generally be
divided into two types: model-based and retrieval-based. Model-
based methods usually use structure from motion to reconstruct
the 3D scene to locate the user. However, a point cloud model of
ascene may contain millions of 3D points [13], [14], [15], which
will generate high storage consumption and greatly increase the
time complexity of model inference.

Retrieval-based approaches have been widely investigated to
achieve accurate and lightweight localization [16] for mobile
terminals with limited resources. It typically involves three steps:
site survey, image retrieval, and location estimation. The site
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similarity between feature segments to decompose features both
horizontally and vertically, thereby facilitating the evaluation
of feature offsets to complete the position estimate. Notably,
the terms “vertical” and “horizontal” are defined within the
context of the two-dimensional plane of the scene. To ensure
the robustness of localization in real scenarios, we also propose
a scanning localization algorithm to minimize the impact of
local obstacles and errors caused by single-frame localization.
By obviating the necessity for specific landmarks with strict
constraints, such as logos, our system showcases practical utility

Fig. 1. Background of image-based indoor localization. How to use sparse database location to estimate user location?.
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Fig. 2. Challenges of image-based localization using sparsely collected
databases.

survey is an offline operation process, which requires environ-
mental image collection at labeled locations. This process is
inherently labor-intensive and tedious as the density of sampling
in space directly affects the final localization accuracy of the
system. This greatly affects the deployment efficiency and cost
of the localization system. Some studies [17], [ 18] use landmarks
with unique characteristics, such as trademarks, posters, etc., for
localization, but this also requires extremely complex detailed
investigation of the scene. Furthermore, this requires users to
choose a specific angle to ensure that specific landmarks are pho-
tographed, which greatly affects the user experience. To address
these limitations, as illustrated in Fig. 1, we explore the question
of whether robust and accurate indoor image-based localization
can be achieved with sparsely collected image databases without
relying on specific landmarks.

C. Proposed Approach

To solve the problem mentioned above, we present ARGILS,
an automated real-time generative image localization system
for robust, low-overheadj and user-friendly indoor localization
solution. ARGILS greatly reduces the workload of site surveys
by cross-sparse image sampling. The feature vectors extracted
from images using the EfficientNet(by) [19] neural network
without the classification layer serve as fingerprint features.
It then uses a distance-constrained generative adversarial net-
work(DistanceGAN) to generate features at missing locations,
which can improve the spatial resolution of the fingerprint fea-
ture database in an effort-efficient manner. ARGILS exploits the

D. Technical Challenges and Solutions

Basically, we are facing three major challenges as shown in
Fig. 2 when using sparsely collected databases for localization:
® Missing Location Features: Using sparse acquisition meth-
ods can reduce the workload but may result in missing fea-
tures at various positions, decreasing localization accuracy.
To address this, we propose generating missing features
to compensate for the limitations of sparse acquisition.
However, constraining the positional relationship between
generated and sampled features is challenging, making it
difficult to directly generate corresponding features based
on distance changes.

® Missing Viewing Angle Features: Different viewing angles
at the same location result in various viewing angle fea-
tures. Locating under a missing viewing angle may lead to
multiple matching results, making it difficult to determine
the relationship between existing angles and synthesize
them to generate view features.

e Complex and Variable Obstacles: Dynamic obstacles often
appear in indoor scenes. When the user’s shooting angle
is blocked by an obstacle, incorrect matching can occur,
leading to unacceptable errors.

To address these challenges, the main solutions and contribu-

tions of ARGILS are summarized as follows:

e Distance-Constraint Generative Model for Feature Gener-
ation to Achieve Effort-Efficient Site Survey: We develop a
distance-constraint generative adversarial network to gen-
erate features of missing locations. This model uses dis-
tance constraints to generate features at varying distances
from the same viewing angle, enabling the creation of
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features for front or rear locations. This can effectively
improve the spatial resolution of the fingerprint feature
database to improve localization accuracy.

® An Orthogonal Feature Decomposition and Localization
Framework for Addressing Missing Views to Achieve Ro-
bust Localization: This framework includes a feature pro-
jection algorithm based on feature similarity, effectively
projecting features to the target perspective. By decom-
posing features vertically and horizontally, we optimize
the two dimensions of coordinates simultaneously. This
method effectively addresses the issue of missing viewing
angle features, as it can accommodate any shooting angle
of the user.

® Scanning Localization Algorithm for Addressing Variable
Obstacles to Achieve Robust and Accurate Localization:
We implemented a scanning localization algorithm that
allows users to scan the scene. It automatically selects the
best frame from the video for localization and uses clus-
tering to refine the user’s position. This approach reduces
errors from mismatches and dynamic obstacles, improving
system robustness.

E. Summary of Experimental Results

We have implemented and tested the performance of ARGILS
using mobile devices in shopping malls, office buildings, and
laboratory buildings. ARGILS can achieve an average local-
ization accuracy of 1.6 m in scenes with clear and simple
features such as a lobby. Even in a shopping mall environ-
ment with complex lighting conditions and complex random
obstacles such as pedestrians, the average error is 2.5 m, which
is 48% lower than the current state-of-the-art method. More
importantly, ARGILS only utilizes 25% of the original database
collection density, significantly reducing the workload of site
survey collection. And it can ensure a stable localization effect
under different lighting environments. At the same time, the
single-frame localization time of our method does not exceed
400 ms on mobile devices with different configurations. On an
ordinary OnePlus8 phone, the single localization time is 105 ms,
while on the poorly configured 360N6 Pro, a single localization
can also be completed within 332 ms.

II. RELATED WORKS
A. Wireless Indoor Localization

With the emergence of the Internet of Things(IoT), local-
ization within indoor environments like supermarkets, airports,
train stations, and hospitals becomes inevitable. Indoor localiza-
tion using wireless technologies such as WiFi, 5G, Bluetooth low
energy(BLE), Zigbee, and radio-frequency identification(RFID)
has seen significant advancement, offering good accuracy in
various indoor environments. WiFi-based [20], [21] localization
technology stands out due to its high popularity and has become
the most widely used solution. [22] proves that KNN is the most
accurate localization technique as well as the most precise. [6],
[71, [23], [24] use 5G new radio (NR) signals to achieve indoor
localization. Zigbee [25] is used for long-distance transmission

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 7, JULY 2025

which has low cost, low data transfer rate, and short latency
time, compared to WiFi standards. At the same time, many stud-
ies [26], [27] use BLE technology to solve indoor localization
problems.

However, these methods often require additional infrastruc-
ture setup, which can be costly and complex. Moreover, moving
objects, human interference, or architectural modifications can
affect signal propagation, leading to fluctuations in localization
accuracy over time. This instability is particularly problematic in
scenarios requiring real-time tracking or precise location-based
services.

B. Image-Based Indoor Localization

Image-based indoor localization has two primary imple-
mentation types: model-based methods and image fingerprint
retrieval-based methods. Model-based methods use structure
from motion(SFM) or simultaneous localization and map-
ping(SLAM) [28] technology to construct indoor 3D models
and perform 2D-3D mapping for localization [15], [29], [30],
[31]. The characteristics of high storage and high computing
performance make these methods unsuitable for deployment on
mobile platforms. The image fingerprint retrieval-based method
only requires storing 2D image features and performing simple
vector operations for localization [32], [33]. Retrieval-based
method [34], [35] offers better efficiency and is more feasible
for real-time applications on mobile devices. Gao et al. [17]
proposed a lightweight site survey method that can automatically
mark image coordinates.

The image-based indoor localization method can also be cat-
egorized into two approaches: landmark location labeling [18],
[36] and camera location labeling [37], [38]. The landmark
location labeling approach is obviously unstable and not robust
in scenes with sparse landmarks. In contrast, the camera location
labeling method uses the camera’s location as image coordinates.
This approach is primarily influenced by the number of pictures
taken, which increases the workload of site surveys to achieve
higher localization accuracy. However, these two methods are
naturally difficult to cope with missing angle labels and dynamic
obstacles such as pedestrians. Our proposed method ARGILS is
based on the camera location labeling approach.

C. Feature Generation

Generative algorithms, like GAN proposed by Goodfellow et
al. [39], have found applications in various domains, such as
image inpainting [40], super-resolution [41], and image synthe-
sis [42]. Conditional GANSs, introduced by Mirza et al. [43],
enhance interpretability by allowing conditional value input to
produce more accurate results. Stable Diffusion [44] has made
important contributions to the development of image generation.

Different from image generate tasks, the information of fea-
ture generation is relatively limited, but the generated result is
more abstract, and the whole process is similar to the middle
part of image generation. Feature generation tasks combine
aspects of image inpainting and super-resolution. Generating
foreground features resembles super-resolution while generat-
ing background features resembles image inpainting and extends
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to edge features. Pathak et al. [45] proposed context-encoder can
train the model by using Loloss and adversarialloss to form
a joint loss, so that the training process can be carried out under
supervision, and has become the backbone of many subsequent
image inpainting work. Isola et al. [46] proposed pix2pix, the
basis of the super-resolution algorithm pix2pixHD [47]. It trains
the model through L;loss and adversarial loss and is the bench-
mark for many image conversion methods.

For our DistanceGAN, ARGILS, we employ an encoder-
decoder network structure. The triplet loss by Hermans et al. [48]
ensures that the distance between negative samples is greater
than that of positive samples while considering their correla-
tion. ARGILS employs a modified version of the triplet loss,
augmented by an Lo loss, to generate analogous features that
facilitate precise retrieval.

III. PRELIMINARY ANALYSIS

In this section, we first introduce the basic image localization
method, which is used as a baseline for comparison with our
method. Then we use preliminary analysis to verify the impact
of the location density and angle number on the localization
accuracy and explore the distance information hidden in the
image features to provide theoretical support for the generated
features. We explored the regularity of features under different
view angles to inspire us to decompose the features for better
utilization. Finally, we compare the impact of obstacles on
localization results to verify that random obstacles in a single
frame image will affect the localization effect.

A. Basic Image-Based Localization Method

The basic method relies on camera location labeling and
involves two main steps. First, during the site survey, workers
capture images of the scene and record the camera’s position
as the image’s location. After extracting features, these images
and location tags form a feature database. Second, in online
localization, the user captures an image, and the best-matching
image is retrieved from the database, using its location tag as
the baseline localization result.

Inthe process of image retrieval, feature extraction and feature
matching are required. To meet mobile deployment needs, we
use the lightweight EfficientNet(by) model [19], pre-trained on
the ImageNet dataset [49]. This model delivers strong feature
extraction performance suitable for most indoor scenes, with the
highest similarity result providing the final localization output.

The basic method has minimal application requirements,
relying only on image retrieval without additional position
calculations. When the image database is dense, it achieves
high localization accuracy. We aim to optimize this method for
reliable localization even with sparse image databases.

B. Impacts of Image Database Density

The localization accuracy of the basic localization method
is determined by the density of the database, which in turn is
influenced by two factors: the number of collection locations
! and the number of viewing angles v at each position. To
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investigate the impact of image database density on localization
accuracy, we conducted tests in a 200 m? test environment
using the basic method proposed in Section III-A. We varied
the number of collection locations [ € {40,80,160} and the
number of viewing angles v € {3,4,5,6}. The viewing angle
represents any angle within the 360-degree horizontal circle
around the user. In each localization test, we randomly selected
[ localization points from the scene and gathered v pictures
of incompletely overlapping shooting perspectives to form an
image database.

Observation: Fig. 5 illustrates the comparison of localization
accuracy under different numbers of positions and viewing
angles. The results show that the higher the number of positions
and viewpoints, the higher the localization accuracy, but the
improvement of the accuracy slows down. This indicates that the
denser the coverage of the scene is, the better it is for localization.
However, too much redundant coverage is not worthwhile.

C. Distance and View Angle Related Feature

Intuitively, the disparity between image features grows when
the view angle is fixed but the distance increases. Similarly, when
the distance is fixed but the view angle changes, the feature
differences also increase. To explore the relationship between
image features, distance, and view angle, we conducted two
experiments. Fig. 3(a) shows images of the same landmark taken
from different positions below a bird’s-eye view, with consis-
tent distances between adjacent positions. Using EfficientNet-
b0 as the feature extractor (classification layer removed), we
compared the Euclidean distances between features of images
captured from these positions.

Distance and Feature Distance: Fig. 3(b) shows feature dis-
tances between images taken from positions O to 4, where the
view angle remains constant, but the distances vary. Feature dis-
tances are small when images are captured from nearby positions
but increase with greater capture distances. This relationship
can be leveraged to generate distance-dependent features that
are sensitive to distance changes under the same view angle,
reducing the need for labor-intensive data collection.

View Angle and Feature Distance: Fig. 3(c) shows the feature
distances between images from positions 5 to 9, which have the
same vertical distance but varying view angles. It is evident that
as the view angle shifts, the feature distance gradually increases,
indicating that changes in view angle impact feature matching
accuracy.

Furthermore, the overall feature distances in Fig. 3(b) are
higher than those in Fig. 3(c). This suggests that when moving
the same distance, the feature changes induced by view angle
shifts are smaller than those induced by distance changes. And
the larger the distance between features, the more accurate it
is for retrieval. This observation guides us to decompose the
features along the direction with the largest feature changes,
which improves the accuracy of retrieval.

D. Impacts of Random Obstacles

In practical indoor localization scenarios, random obstacles
(e.g., pedestrians) often appear in the user’s field of view, and
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of different acquisition parameters on localization accuracy. (a)change only the
number of locations (b)change only the number of views (c)change the number
of locations and angles at the same time.

the extent of occlusion caused by these obstacles is variable.
While users may try to avoid such obstacles when capturing
images, eliminating them entirely is nearly impossible. To assess
the impact of random obstacles, we conducted comparative
experiments using a basic image-based localization method.
One group used test images without significant obstacles, while
the other simulated random obstacles by adding random white
blocks to the images. The localization error results, shown in
Fig. 4, reveal significantly worse performance in the group with
random obstacles. This indicates that image-based localization
systems are influenced by feature variations in the images,
and random obstacles inevitably introduce matching challenges.
Therefore, addressing the issue of randomly appearing obstacles
during localization is one of the key challenges tackled in this
study.

feature distance

m_-
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position

(b) Position 0-4
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IV. SYSTEM FRAMEWORK

Our primary goal in designing the ARGILS is to achieve
higher localization accuracy with minimal site survey. The sys-
tem, shown in Fig. 6, consists of two main phases: offline and
online.

In the offline stage(Section V), the localization service
provider defines appropriate orthogonal x-y axis directions in-
doors. Then, several suitable locations are selected as collection
points for the site survey, and images are captured in one or more
suitable directions from the positive x-axis direction, negative
x-axis direction, positive y-axis direction, or negative y-axis
direction. Features are then extracted from these images to estab-
lish the original fingerprint feature database. Utilizing the trained
DistanceGAN model, the original fingerprint feature database is
expanded by generating features at the same viewing angle but
varying displacements, thereby constructing a generative feature
database for online localization.

In the online phase(Section VI), ARGILS initially employs
a single-frame orthogonal localization method. After the user
captures a scene image with their mobile devices at their loca-
tion, ARGILS performs orthogonal decomposition of the image
features along the x-y axis to extract vertical and horizontal
features. The features in these two directions are subjected to
two-stage retrieval to quickly obtain the localization result. To
better handle random obstacles in the scene, ARGILS also offers
a scanning localization option that leverages multiple frames. If
the user is convenient to provide a panoramic scan video of the
indoor environment from a fixed position, ARGILS will offer a
more robust localization service through keyframe filtering and
continuous aggregation methods.

V. OFFLINE FINE-GRAINED FEATURE DATABASE GENERATION

In this section, we propose a method to expand the original site
survey database using a generative adversarial network. This can
build a high-density feature database with as little manual collec-
tion work as possible. During the site survey, we set the vertical
and horizontal feature perspectives in the scene by selecting
the x-y orthogonal direction. Then, sufficient but non-redundant
collection positions are selected in the scene to comprehensively
collect indoor scenes. This allows us to generate features for the
missing locations through Distance GAN to expand the database.
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Next, we will sequentially introduce the site survey method, the
design and training of DistanceGAN, and the construction of the
generative feature database.

A. Original Database Through Orthogonal Site Survey

Experimental results in Section III-B show that four viewing
angles typically ensure high localization accuracy, as they cover
most scene features. Based on this, we conducted the site sur-
vey along orthogonal directions, selecting collection points to
achieve comprehensive scene coverage with minimal effort.

Specifically, the orthogonal measurement method is shown
in Fig. 8. First, two orthogonal directions within the scene must
be defined: horizontal and vertical angles. Next, for common
scenes, a crosshair can be used to select enough collection

points to ensure the complete coverage of the environment.
Then, images are captured at the collection points along the
horizontal or vertical directions. The occlusion of random obsta-
cles(pedestrians) should be avoided as much as possible during
the collection process. It is important to note that although the
collection points in Fig. 8 are evenly distributed along a straight
line, the actual positions are flexible. Since real-world scenes
can be complex, it is only necessary to ensure that the collection
viewpoints are either horizontal or vertical. Features extracted
from images using EfficientNet-b0 are used as fingerprints. By
combining location labels with features and their corresponding
directions, we were able to construct the original site survey
database with very minimal effort. We use I, [F,ID and n to
represent coordinates, features, view directions and the number
of features respectively. Then the original site survey database
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y-axis, or negative y-axis, respectively.

=
=1

B. Distancegan

1) Structure of DistanceGAN: We constructed the Distance-
GAN based on CGAN [43]. The network structure is depicted in
Fig. 7 and consists of two main parts: the generator and discrim-
inator. The generator takes the base feature and displacement
splice as input and aims to generate the feature vector after
displacing the base feature by the corresponding distance. Our
network design draws inspiration from the context-encoder [45],
which exhibits strong feature learning capabilities and serves as
the foundation for various image inpainting tasks. In order to
align the distribution of image features extracted by EfficientNet,
we substitute the original RELU [45] with the ELU [50], which
is capable of generating negative values. This modification also
serves to reduce the computational burden on the model.

2) Training of DistanceGAN: The purpose of feature gener-
ation is to enhance localization performance. Conventional gen-
erative tasks using GANs often employ content-based loss, like
Mean Squared Error (MSE), for supervised training. However,
as validated by [51] and [52], MSE is unable to guide the model
in learning the structured information within the image. At the
same time, due to the consistent view angles and close proximity
between the features in this study, the differences between the
features are minimal, requiring contrastive methods to enhance
the model’s learning capability. To address this, we propose
a joint loss, combining adversarial loss and content loss with
distance loss during training.

To prepare the training data, our dataset contains numerous
single-view image sets. For each perspective image set, we
extract three different feature vectors from pictures with various
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displacements Fig. 9(a): positive feature, base feature, and neg-
ative feature. The base feature serves as a reference to generate
features corresponding to the position of the positive feature,
which also serves as the ground truth for the generated feature.
To better learn the position distinction between features, we
also include any non-ground truth position feature as a negative
feature.

Adversarial Loss: Our adversarial loss aligns with that of
GAN, aiming to generate features that closely resemble the orig-
inal feature distribution. During the training process (Fig. 9(b)),
we use the base feature fj,, offset value o, and ground truth feature
[fp at the offset for adversarial training. During discriminator(D)
training, the concatenation of basic features f,, ground truth
feature f,,, and corresponding offset value o will be marked
as true, otherwise it will be marked as false if it contains the
generated offset features. Correspondingly, in the generator(G)
training stage, the ground truth feature f, is used for supervised
training. The adversarial loss is expressed as follows:

mcgnmgx V(D,G) =Ey,~r [log D (fp | fo,0)]

+ IEzwpz(z) [log (1 -D (G (fb7 0)))}
(2)

Distance Loss: As shown in Fig. 9(c), distance loss aims to
learn the distance discrimination between features. We design
the distance loss as a combination of MSE loss and Triplet
loss [48], defined as follows:

Lais = Lyse + Lrriple

1 n
= > NG (fo,0) = foll3
=1

+ Zmax(||G(fb70) — fpll2

=1
_||G(fb70)_fn||2+aa0) (3)

where f,, is a negative sample indicating any other feature except
fp under the same perspective. o is a margin that controls the
minimum difference between the positive and negative pairs in
the feature space. Specifically, the margin « ensures that the
model is penalized if the distance between the anchor and the
negative sample becomes smaller than the distance between
the anchor and the positive sample, thus forcing the model to
learn a clear distinction between positive and negative pairs. The
Euclidean distance ||a — b||o measures the difference between
two feature vectors.

In this way, the MSE loss focuses on minimizing the overall
error between generated and ground truth features, while the
Triplet loss ensures that the model learns to distinguish between
similar and dissimilar features effectively.

Joint Loss: We define joint loss as follows:

L= )\adeadv + )‘disLdisa (4)

where A,q4, and A4;s are the coefficients of loss respectively.
Displacement Retrieval Error: In order to evaluate the per-
formance of the generative model, we propose the displacement
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Fig. 9. Overview of DistanceGAN training.

retrieval error. We use F = {f1, fa, ..., fi } to represent the set
of features obtained at the same angle but different distances, and
calculate the corresponding distance set S = {s1, s2,..., Sk}
from the coordinates corresponding to these features. Then we
can get:

(Sv]:):{<$iafi>‘i:1’2""’k}a (5

from which we can get the offset set for the generator based on
base feature (s, fp) € (S, F):

O = {sp — si|s; € S}

= {01,02, .. .,Ok}.

Then we can use the generator(G) to get the generative set
(Safg) = {<81,G(fb,01)>|7/ = 172a . ak}
:{<517ff>7'"7<Sb7fb>7"'7<5k7f1:>}' (6)

Suppose (s¢, fi) € (S,F) is chosen as the test case. The
best matching result retrieved in the generative set is (s, f;) €
(S, F;), thus the displacement retrieval error can be obtained:

DRE = |s; — s, @)

C. Generative Feature Database Using DistanceGAN

After training the DistanceGAN, we can use it to expand
the original feature database. For any feature in the original
database, we can select a set of appropriate offsets O according to
its viewing direction. When the viewing direction is horizontal,
the offset corresponds to the change of the horizontal coordinate
x, and vice versa for the change of the vertical coordinate y. For
any original feature ((z;,v;), fi,d;) € (L,F,D), suppose the
offsets set is:

AXi = {Amil, .. 7A$lm},dz = 1,2

FAY: = {Ayan . Ay )dy =4 L 0mE

3)
where m represents the number of features to be generated.
Then we use the generator(G) in DistanceGAN to obtain a set

of feature groups F; based on f; as:

Fi ={G(fi,on)|ox € O;} )

(b) Adversarial training.

(c) Distance loss training.

A positive value of O; corresponds to moving forward from
the current perspective, whereas a negative value corresponds to
moving backward from the current perspective. Consequently,
the coordinates are updated differently under different shooting
angles d,. The coordinates £ of the generated features can be
obtained from the offset and the viewing direction:

(Tiyyi) + AXy,di = 1
(isyi) — AX;,di =2
(ziyyi) + AYi,di = 3
(zi,yi) — AY;,di = 4

3

={l5,.. U, (10)

Consequently, for each feature ((x;,y;), fi, d;) in the original
database, a set of generated features with the same view direction
but different positions can be obtained as:

(‘Cj?]:z*?Dl) = {< :lvfi*lvdi>’ SEE) <l;’km’f;mvdi>}'

We use L*,F*,ID and n to represent generative coordinates,
generative features, view directions and the number of features
respectively. Finally, all the generated features together form a
generative feature database as follows:

(]L*JF*;D) = {( T:Fiﬁapl)?' c (l:f:w}—:;v,Dn)} (11)

The generated database is shown in Fig. 10. Note that the set
of generated offsets in the horizontal and vertical directions here
is flexible.

VI. ONLINE REAL-TIME LOCALIZATION WITH ORTHOGONAL
FEATURE DECOMPOSITION

In this section, we propose a single-frame orthogonal local-
ization algorithm based on orthogonal feature decomposition,
designed to address the issue of missing viewing angles in
the generative database. Orthogonal localization first extracts
features from the user-provided image using the same method
as the offline process, and then decomposes the features along
the horizontal and vertical directions. By conducting a two-stage
retrieval for the horizontal and vertical features in the feature
database, the user’s positional information in the two orthogonal
directions can be obtained separately. This orthogonal feature
decomposition approach aligns with the site survey method,
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Fig. 10.  Generative features database construction.

allowing ARGILS to effectively utilize the generative database
to enhance localization accuracy, even when the user’s captured
angle differs from the feature library’s angle. However, single-
frame images are susceptible to random obstacles, which may
interfere with localization. To mitigate this, we offer a scanning
localization option. Scanning localization filters keyframes from
the multi-frame video provided by the user and continuously
aggregates the results from single-frame orthogonal localization,
thereby reducing the impact of random obstacles and improving
localization accuracy.

A. Single-Frame Orthogonal Localization

As shown in Section V-C, the generative feature database
contains only features from four fixed view directions. However,
the user’s shooting angles are random, and there is no guarantee
that they will be consistent with those in the generated database.

To address the issue of limited perspectives in the genera-
tive feature database, We propose a single-frame orthogonal
localization method for fast and efficient real-time localiza-
tion. After obtaining the features through feature extraction, the
single-frame orthogonal localization method employs a feature
projection method to decompose single image features along
the horizontal and vertical directions. Subsequently, a two-stage
retrieval process is conducted for the horizontal and orthogonal
features, respectively. Ultimately, the positional information
in the horizontal and vertical directions is utilized to obtain
accurate localization results. Next, we will introduce the idea
of orthogonal feature decomposition and two-stage retrieval in
detail. Finally, the complete single-frame orthogonal localiza-
tion algorithm is given.

1) Orthogonal Feature Decomposition: When the user’s
shooting angle lies between the horizontal and vertical axes,
the extracted features from the image will contain elements
from both directions. Therefore, we propose a feature projec-
tion strategy. Feature projection begins by selecting a reference
feature (Primary Match Feature). If the reference feature and the
input feature share overlapping perspectives, the corresponding
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Fig. 11.  Feature projection.

overlapping features will exhibit high similarity. Based on this
idea, we segment both the input feature vector and the reference
feature and then calculate the similarity between each segment
sequentially. When segment features are similar, that segment is
retained as the projected feature. Conversely, masked segments
will replace the original segments and will not be used in subse-
quent retrieval and matching processes. The feature projection
process is shown in Fig. 11. Through feature projection, we can
retain the features of the input features that match the target
viewing direction, thereby reducing the interference caused by
irrelevant features when the input features are generated and
positioned in this direction.

To enable feature decomposition along the horizontal and
vertical directions, we first classify the original feature database
according to direction as:

(L, Fr, Di)norizontar = 1, fi, di)|ds € {1,2}, f; € F}
(LvamDv)vertical = {<l27fz7dz>‘dz € {3a4}7f1 S F}

Then, the user’s input feature I is retrieved in both [F,, and I,
to obtain the optimal results through

v = Sim(f,
f maxgep, 1m( ) (12)
frn = maxgep, Sim(f, I)

where Sim represents the operation of calculating the cosine
similarity of two feature vectors.

Then the reference features in the vertical and horizontal di-
rections are f, and f, respectively. Through feature projection,
we can separately obtain the vertical projection feature (vpf)
and the horizontal projection feature (Apf). At this point, the
orthogonal feature decomposition of the single-frame feature
has been completed.

2) Two-Stage Retrieval: As the generated features in the
generative database are expanded separately according to each
single original feature, this sequential relationship can be uti-
lized in the retrieval process. At the same time, the original
features can quickly and accurately help the system to narrow
down the retrieval scope. In light of these considerations, we
propose a two-stage retrieval method.
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Fig. 12.  Two-Stage retrieval.

We will input vpfand hpf obtained through orthogonal feature
decomposition into the two-stage retrieval process separately.
Therefore, the two-stage retrieval process will use I to generally
refer to the input feature. The process of two-stage retrieval is
shown in Fig. 12.

e First-Stage Retrieval: The query image feature [ pro-
vided by the user is utilized to retrieve the optimal match
((x4,9:), fi,d;) in the original feature library (L,F,D)
through (12).

® Second-Stage Retrieval: As illustrated in Section V-C, the
generated features with different distances for the same
viewpoint are generated through f; as follows:

<li7 fia d’L> m (L":‘?‘/—'.v*?,D’L)

Then I is further retrieved from this set of generated
features to obtain the optimal match as well as the corre-
sponding offset. The optimization method of offset-based
coordinates varies depending on the d; of the feature. At
this point, the user’s position information in direction d;
has been confirmed.

For feature I without decomposition, two-stage can only op-
timize position information in one direction at a time. But when
we implement two-stage retrieval on vpf and hpf respectively,
the user’s position information can be confirmed in the vertical
and horizontal directions simultaneously. Specifically, vpoint =
<(xv7 yv)7 fva dv> and hpOint = <(xh7 yh)v fhv dh> represent the
matching points of vpf and hpf in the first stage respectively.
of fset, and of fsety represent the offsets obtained in the
second stage. Take d,, = 3 and dj, = 1 as an example, as shown
in Fig. 13. Then the final localization result (Z, §) of the user is:

T =Xy + of fset,
9 =uyn+offsety

Compared with traversing and searching directly in the gener-
ative database, two-stage retrieval has the advantage of reduced
time complexity. According to (1) and (8), the number of features
in the original database is n, and each original feature corre-
sponds to the generation of m generated features. Therefore,
the time complexity of traversing retrieval is O(m x n), while
the two-stage method is O(m + n). This reduction in time

(13)
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Algorithm 1: Single-Frame Orthogonal Localization Algo-
rithm.

Require:input feature [; original feature database ofd;
expand feature database e fd; threshold of check one view
or two views cth; segment length sl; threshold of cosine
similarity cos;

Ensure:Location
1: function ProjectFeature( f src, fdest):

: fproj = fsre.copy()

1k = fsrc.length = sl

fori=0;i<k;i++do

sim = CosineSimilarity(fsrc[i x s, (i + 1) x

sl], fdstli x sl, (i+1) x sl])

if sim < cos then

forojli x sl, (i + 1) x sl] = Mask()

end if
9: end for

10: return fproj

11: vpoint = Retrieval(I, o fd.vertical View)

12: hpoint = Retrieval(I, o fd.horizontalView)

13: vpf = ProjectFeature(I, vpoint. feature)

14: hpf = ProjectFeature(I, hpoint. feature)

15: if |vpoint.con fidence — hpoint.con fidence| > cth

then

16: if vpoint.con fidence > hpoint.con fidence then

17: b, = GenerativeSetRetrieval(vp f, vpoint, e fd)

A RS I W)

*ED

18: b, =0

19: else

20: by, = GenerativeSetRetrieval(hp f, hpoint, e fd)
21: b, =0

22: endif

23: else

24:  of fset, = GenerativeSetRetrieval(vp f, vpoint, e fd)
25:  of fset;, = GenerativeSetRetrieval(hp f, hpoint, e fd)
26: end if

27: if hpoint.d == 1 then

28:  location.x = hpoint.x + of fsety,

29: else if hpoint.d == 2 then

30:  location.x = hpoint.x — of fsety,

31: end if

32: if vpoint.d == 3 then

33:  location.y = vpoint.y + of fset,

34: else if vpoint.d == 4 then

35:  location.y = vpoint.y — of fset,

36: end if

37: return location

complexity greatly reduces the retrieval time, thereby improving
the localization speed.

3) Single-Frame Orthogonal Localization Algorithm: The
single-frame orthogonal localization algorithm process is shown
as Algorithm 1. Both the orthogonal decomposition and the
first stage of the two-stage retrieval require searching within the
original database, so we can merge this step. It is worth noting
that when there is a significant confidence gap between vpoint
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and hpoint (line 15 in Algorithm.1), we assume that the shooting
angle is either horizontal or vertical. In this case, we only use
the feature with a higher confidence level for two-stage retrieval
to optimize the localization along a single direction.

In summary, the single-frame orthogonal localization algo-
rithm resolves missing perspectives in the generative database
and optimizes localization accuracy in both directions. The
two-stage retrieval improves real-time performance by reducing
localization time.

B. Scanning Localization

While orthogonal localization enables effective localization
from a single image across various scenarios, challenges re-
main in certain conditions. Specifically, occlusions or interfer-
ing objects within the scene can adversely affect localization
results. Additionally, images that lack distinctive features, such
as large, textureless white walls, can lead to localization errors.
These issues often arise when users select inappropriate shooting
angles. When only a single image is captured for localization,
there may be significant discrepancies between the localization
outcome and the actual position, resulting in a suboptimal user
experience, such as repeated location requests.

To address these challenges, we have developed an optional
localization mode called scanning localization. In this mode,
users are required to rotate their phones to capture a video of
the scene while staying at a fixed point. Suitable frames are
then selected from the video stream for single-frame orthogonal
localization, allowing us to continuously update and optimize
the user’s location in real-time through clustering techniques.

The key issue of scanning localization is how to automatically
select appropriate keyframes in the video, and how to fuse the
localization results of these keyframes to obtain the final precise
localization. The flow of the scanning localization algorithm we
designed is shown in Algorithm 2.

1) Key Frames Filtering: A single video contains a large
number of frames with little variability between adjacent frames,
making frame-by-frame localization increase the system over-
head and latency without the corresponding improvement in
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localization accuracy. Therefore, we need to perform efficient
and reasonable keyframe selection to select the images that can
be efficiently localized and filter out the redundant and repetitive
images. Therefore, we use three dimensions: image sharpness,
number of features and keyframe variability to evaluate the
criticality of frames.
® [mage sharpness: A sharp image means that the difference
between light and dark of its texture boundaries is obvious,
which is more conducive to feature extraction and match-
ing. We use the Laplace operator f; to describe the clarity
of the image.
® Number of features in the image: We want the image to
have more features so that its differentiation will be more
obvious and the accuracy in image feature retrieval will
be higher. We choose to use ORB [53] to extract the
local features of the image, which can achieve a feature
extraction speed of more than 30fps on the mobile side. By
setting the intensity threshold of the features, we consider
the local features that meet the threshold as valid local
features and the number of valid features as fo.
® Keyframe discrepancy: When the variability of adjacent
keyframes is high, different keyframes can cover more
scene features. Considering that each frame image has the
same size as each other and we want different keyframes to
contain different structural information, this paper uses the
Hamming distance in the perceptual hashing algorithm [54]
to represent the difference between two images. For the
previous keyframe Pre and the current frame Cur, the
keyframe discrepancy fs is

f3 = HammingDistance(hashpe, hashcuy,)

= Z hashpreli] ® hashouyr|i]
i=0

(14)

where @ represents XOR operation.

After the above calculation, we can get the frame features
x; = {f1, f2, f3} of the i-th candidate image. We use a binary
classification model to classify the keyframes, and the classifi-
cation result ¥, is 1 when the candidate image is a keyframe,
and O when it is a non-key frame.

Ypre = W xx +b (15)

where W, b are the model parameters. To train the model, we
construct the training data using the collected data in the offline
phase and optimally train these parameters using the Binary
Cross-Entropy function:

Loss = —(y - log(ypm) + (1 —y) -log(1 - ypw)) (16)

We collected landmark images and surround video data of the
environment respectively in the offline stage, where the image
data are used as landmark data and the video sayings are used
as training data. For the i-th frame of the j-th video sample,
we calculate the localization error e] of the frame feature z].
we identify frame i with eg less than 15% as an alternative
keyframe. We establish a filtering criterion for alternative frames

with intervals not less than 10, selecting some as key frames
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Algorithm 2: Scanning Localization Algorithm.

Require:input video frame stream f's; original feature
database ofd; expand feature database e fd
Ensure:Location
1: location = NULL
2: frame, status = ReadFrameFromStream( f s)
3: while status == true do
4:  fil = FilterFrame(frame)
5: if fil == false then
6: frame = Preprocess(frame)
7 feature = FeatureExtract( frame)
8: points = TopMatchRetrivial( feature, ofd)
9 clustersNum = Cluster(points) // KMeans
0 if clustersNum == 1 then
1 currentLocation =
GenerativeLocalization(feature, point, efd)
12: else if clustersNum > 1 then

10:
1

13: vertical Point, horizontal Point =
GetOrthogonalPoints(points)
14: current Location =

OrthogonalLocalization(verticalPoint,
horizontalPoint, efd)

15: end if
16: location = Aggregate(currentLocation, location)
17: endif

18:  frame, status = ReadFrameFromStream(fs)
19: end while
20: return location

labeled as 1, while the remaining frames are labeled as 0. This
process forms the training dataset for the model.

At this point, we get a binary classification model that can
perform keyframe detection. In the online localization process,
we use a sliding window of length 10 to limit the selection range
of keyframes, so that at most one keyframe is included in the
same window.

2) Aggregate Update: After keyframe filtering for the query
video submitted by the user, we perform single-frame orthogonal
localization on the obtained keyframes respectively. Ideally,
the localization results of these images are the same, but the
localization results of a single image will be biased due to the
existence of viewing angle and obstacle defects, so we need to
aggregate these positions to obtain a better aggregation center
as the localization result.

During location aggregation, we define an image sequence as
I, where I, represents the i-th view image. We can obtain a single
localization result L; : (x;,y;) through position estimation dur-
ing sequence processing. The confidence C; of L; is represented
by the matching error. Aggregating the position in the sequence
is an iterative process during which the user’s current position
L* = (z*,y") is continuously calculated. Therefore, we can
treat location aggregation as using the location L; in the image
sequence to continuously update L*.
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TABLE I
DATA ACQUISITION IN DIFFERENT SCENARIOS
# ‘ Scenarios ‘ Size(m~) | Map locations ‘ Map images ‘ Test locations / videos
1 | Shopping mall(one floor) 5120 210 430 160
2 | Office Building 1080 80 172 60
3 | Laboratory Building Lobby | 231 20 42 20
C.
* * ?
Y =y*x+yi —y) X == (18)
( Relomnwer
C* = max(C*, C;) (19)

As aresult, we achieve position aggregation in the iterations of
the image sequence, and the position confidence increases with
the number of images.

VII. IMPLEMENTATION AND EVALUATION
A. Experimental Settings

1) Experimental Scenarios: We conducted experiments in
three scenarios: a shopping mall’s one floor, an office building’s
first floor, and a laboratory building’s lobby. As shown in Fig. 14,
these scenes have distinct layout distributions, with the mall
having a large area with more iconic elements, the office building
being relatively empty with sparse features, and the laboratory
space being compact with repeated elements and low scene
discrimination. The data collection situation is summarized in
Table L.

2) Experimental Environment: The feature generative model
was trained using Keras on an Nvidia GeForce RTX 2080Ti
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and deployed on an Ubuntu 20.04 machine for expanding the
feature database. Our localization system was primarily tested
on three mobile phone models: OnePlus 8 T, HUAWEI Mate
20, and 360 N6 Pro, to evaluate different models’ performance.
Please note that different mobile devices have different sizes
of photosensitive components and zoom ranges, so the images
taken at the same location with different focal lengths by users
may vary significantly. When the equivalent focal length used
by the user for shooting differs significantly from the equiva-
lent focal length at the time of data collection, differences in
localization retrieval may occur. To avoid the inconvenience
caused by the heterogeneity of device focal lengths, this paper
uniformly uses the most common equivalent focal length size at
present, which is 26 mm, for both data collection and retrieval,
thus ensuring consistency in the perspective of map collection
and user retrieval. In the application of smartphones, the API
provided by the zoom lens can be utilized to set the equivalent
focal length.

3) Data Acquisition: Data collection involved obtaining a
generative model dataset and a localization dataset. We devel-
oped amobile application to capture images quickly with manual
marking for ease of use.

The generative model requires a single-view dataset. For each
view, we will take multiple displacement pictures, and use the
relative displacement value and the view id as their labels. In the
process of generating data collection, we use multiple different
types of mobile phones to capture images and keep the distance
between any two adjacent images within the range of 0.4 m-1 m.
Finally, we take 4544 pictures of 227 different views for GAN
model training and testing.

The localization dataset is divided into map data and test
data. Initially, we partition each experimental scene into several
approximate rectangular areas. We then capture vertical and hor-
izontal perspective images along the centerline of each rectangle
at a distance of 0.8 m to 1 m. These images are annotated with
camera coordinates. Finally, we randomly select several loca-
tions within each scene to record a 360-degree video, marking
the corresponding coordinates. All test images are sourced from
these randomly selected locations, simulating real-world usage
scenarios.

4) Comparative Methods: In order to verify the performance
of our system, we compare with a number of different state-
of-the-art approaches: HAIL [18], Sextant [17], GLN [55],
PixLoc [56] that uses DISK [57] for feature extraction and
LightGlue [58] for feature matching. Our ARGILS aims to
achieve lightweight real-time and reliable localization services
based on a sparse image database. We will compare ARGILS
and state-of-the-art methods from multiple aspects: localization
accuracy, multi-scene verification, mobile terminal localization
performance, and storage overhead. To verify the effects of or-
thogonal localization and test the feasibility of mobile platform
deployment.

B. Performance Evaluation

1) Real Localization Case: Weillustrate the localization pro-
cess and real effects using a real case in an office building
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Fig. 15. Real case.

scene, as depicted in Fig. 14(b). In Fig. 15, random perspective
pictures taken by the user at their location serve as retrieval
inputs. Initially, in step 1, the input image features undergo
orthogonal decomposition in both vertical and horizontal di-
rections. Subsequently, matches are retrieved separately in the
original database. If the confidence of retrieval in both directions
is similar, the offset position is determined within the respective
feature databases in step 2. Finally, the final localization result
is derived in step 3 by utilizing the matching positions in both
vertical and horizontal directions. However, in the scenario
depicted in the upper left corner, due to significant disparity
in confidence between the features obtained in the vertical and
horizontal directions, only the generated feature database in the
horizontal direction is utilized to obtain the localization result.

2) Performance of DistanceGAN:

e Reduction of Location Error: DistanceGAN generates
missing location features in the map. We evaluate the gen-
erative model’s effectiveness using displacement retrieval
error in Section V-B-2. For comparison, we select a base
feature from each viewing angle feature set and generate
features based on displacement. Without generation, the
base feature is used to construct the map, and the retrieval
error for any feature in the set is measured as its relative
displacement to the base feature. With generation, the error
is measured as the displacement retrieval error. Fig. 16(a)
illustrates the generative model’s performance compared
to the non-generated retrieval error. The average error after
generation is 0.99 m, while without generation, it is 2.3 m.

e Different Generative Model: Fig. 16(b) further compares
the generative effects of different GAN models: Stable
Diffsuion [44], Context-Encoder [45] and Pix2Pix [46]
that use U-Net [59] structure for image translation. We
adjusted the feature and displacement input for Pix2Pix
and Context-Encoder during training and evaluated their
generation effect using displacement retrieval error. For
Stable Diffusion, prompts with distance constraints are
used directly for generating. DistanceGAN achieved the
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best generation effect, with mean error decreased by
15.0% and 15.7% respectively compared to context-
encoder and pix2pix. In comparison to Stable Diffu-
sion, which is incapable of understanding actual phys-
ical distances, DistanceGAN has undergone significant
advancements.

Different Base Feature: Choosing the right base feature
is crucial for better generation. Under the same viewing
angle, the front relative position has a higher definition
but fewer perceptible features, while the back position’s
image area is relatively blurred, but more features can be
perceived. Therefore, we experimented with features from
the front, center, and tail ends as the base feature, setting the
generating range to 8 m and the step size to 0.8 m. As shown
in Fig. 16(c), selecting the middle position as the base
feature yields an average error of only 1.02 m, significantly
lower than the errors caused by selecting the front or back
ends. The middle position maintains a relatively close
distance to both ends simultaneously, resulting in lower
generation difficulty.

Different Generative Range: The generation range will not
only affect the performance of the generation but also the
site survey step. The larger the generation range, the smaller
the sampling density. We choose the feature at the center
position as the base feature and test the generation range of
6 m, 8 m, 10 m, and 12 m with a generation step length of
0.4 m. As shown in Fig. 16(d), when the generation range
exceeds 8.0 m, the localization accuracy is relatively close.
Although the increase in the generation range can reduce
the sampling density, the indoor scene is not open. The
generation under the same viewing angle usually does not
exceed 10 m. Its localization effect is not much different
from the 8 m generation range, but it will increase the size
of the feature library, so choose 8 m. The generation range
is more suitable for mobile applications.

e Different Step Size: The main factor affecting the gener-
ation step size is the size of the generated database. We
set the generation range to 8.0 m, and select the center
location feature as the base feature for experimentation.
As shown in Fig. 16(e), the average localization accuracy
of 0.8 m step length is 1.02 m, which is slightly lower than
0.99 m of 0.4 m step length, but the size of the feature
library generated by 0.4 m step length is twice the 0.8 m
step length, so choose 0.8 m step length is more conducive
to mobile terminal deployment.

The above experimental results demonstrate that our genera-
tive model optimizes localization results under the same perspec-
tive and significantly improves localization accuracy. Unlike the
direct feature generation of the confrontation network, Distance-
GAN enhances feature discrimination under different displace-
ments and improves generation effectiveness using distance
loss. The experimental results indicate that selecting the center
location feature for generation results in higher localization
accuracy. Since the intermediate position can be generated in
both forward and backward directions simultaneously, in some
narrow spaces, it is possible to choose only one position for data
collection when facing different directions on the same straight
line.

3) Performance of Different Components: We compare dif-
ferent modules of ARGILS in shopping malls, including or-
thogonal localization, generative localization, and scanning
localization, using a basic method as a benchmark. Genera-
tive localization employs the two-stage retrieval method from
Section VI-A-2 in the generative database. As shown in
Fig. 16(f), their mean errors are 5.14 m, 3.67 m, 2.50 m, and
2.20 m, respectively, with orthogonal and scanning localization
showing higher accuracy. Scanning localization can achieve
better localization accuracy than orthogonal localization based
on a single frame, because single frame localization is often
more easily affected by random obstacles(pedestrians). This
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suggests scanning localization enhances fault tolerance and
addresses partial orthogonal localization failures. Fig. 16(g)
further compares orthogonal and generative localization’s op-
timization relative to the basic method, showing that orthogonal
localization offers more optimization potential and better overall
performance. Both methods improve basic method errors due
to sparse database construction, demonstrating the feasibility
of optimizing localization from both vertical and horizontal
perspectives.

4) Performance Comparison: The results of comparison
with other state-of-the-art methods are shown in Fig. 16(h).
We compared Pixloc(DISK+LightGlue), HAIL, Sextant, and
GLN using the orthogonal localization method and achieved the
best performance. The mean localization error of our method is
2.50 m, which is 48.2% lower than the best-performing HAIL
among other methods. At the same time, the localization error
of our method reaches 90.7% within 5 m, which is 34.1% higher
than that of HAIL. PixLoc builds 3D cloud maps using the same
original site survey database as in ARGILS. The results show
that PixLoc has poor localization results due to the sparsity of
the raw acquisition, but ARGILS is able to compensate for this
by generating features. Experiments show that, on the one hand,
ARGILS can effectively reduce matching errors through deep
feature retrieval, thereby reducing large localization errors, and
keeping localization accuracy within a relatively controllable
range. On the other hand, by generating a combination of local-
ization and orthogonal localization, our method is also superior
to other methods in low-error accuracy.

5) Performance in Different Areas: We test ARGILS in three
different scenarios. In the test, using orthogonal localization to
calculate the position, the results are shown in Fig. 17. The
localization errors of ARGILS in a shopping mall, an office
building, and a lobby are 2.50 m, 2.0 m, and 1.6 m respec-
tively. The accuracy of localization error within 2 m is 46.0%,
63.3%, and 72.0%. The maximum error is basically controlled
within 5 m. Localization in shopping malls is suboptimal due
to the complexity and variability of the lighting environments.
Variations in lighting equipment, floor and glass reflections
can compromise the extraction of key features from images,
resulting in Localization errors that frequently exceed 4 m. This
in turn negatively affects the overall accuracy of localization
results.

Furthermore, we also test the localization accuracy of other
methods in various scenarios, and the average error of each
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method is shown in Fig. 18. In all scenarios, ARGILS achieves
the best performance, especially in the most complex shopping
mall scenarios. The localization accuracy of PixLoc is sus-
ceptible to significant inaccuracies due to the limited number
of captured images utilized to construct the 3D point cloud.
Conversely, when a sufficient number of matching features are
present in the user-supplied images, the localization accuracy
is highly reliable. Therefore, the workload of the field sur-
vey plays a pivotal role in determining the effectiveness of
PixLoc.

6) Time Consumption on Different Devices: We hope that
ARGILS can be fully deployed on the mobile terminal to provide
location services. To this end, we analyze the running time of
ARGILS on OnePlus8, HUAWEI Mate20, and 360 N6 Pro. As
shown in Fig. 19, we test the running time of different steps
of ARGILS on different models, including feature extraction,
feature retrieval, orthogonal localization, and complete opera-
tion of full localization. In the experiment, we set the feature
database size to 1000 and used 1000 images for testing. On
the well-configured OnePlus8, the single localization time is
105 ms, and in the poorly-configured 360N6 Pro equipped with
Snapdragon 660 CPU (8 cores, 2.2 GHz) and 6 GB RAM, a
single localization can also be completed within 332 ms, which
proves that our system can run in real-time on most current
mobile phones. In contrast, HAIL and Sextant extract SURF
features to work, and the time cost is relatively large. SURF
also has a large overhead in the matching stage, which limits
their real-time application on the mobile phone. In addition, the
orthogonal localization proposed by us does not significantly in-
crease the time overhead of the system and has good practicality.
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7) Performance of the Site Survey Workload: We conducted
a comparison of the site survey workload and localization accu-
racy between the orthogonal localization method and the basic
localization method proposed in Section III-A across different
scenarios. Basic(25%), Basic(100%), and Basic(200%) repre-
sent the performance of the basic localization method under
different site survey densities. The percentage represents the
proportional relationship of the number of features used in the
feature database for localization. Basic(100%) and Basic(200%)
are databases with the sampling positions and angles doubled on
the basis of Basic(25%). Meanwhile, ARGILS represents the
performance of orthogonal localization under the same survey
density as Basic(25%), but ARGILS generates fingerprints for
other locations to extend the database density. As shown in
Fig. 20, the average error of orthogonal localization in each
scene is slightly higher than Basic(200%), and the error is much
lower than other schemes. This means that ARGILS is able to
achieve the same accuracy as the basic localization method with
200% of the site survey workload while paying only 25% of the
site survey workload.

8) Performance of Different Scanning Time: As the scan time
increases, the more input features the system can acquire. In
order to verify the effect of scan time on the system, we chose
segments with different time lengths for testing. As shown in
Fig. 21, the average error of the 4 s scan segment is 1.91 m,
which is 11.1% higher than the 2 s duration, and as the du-
ration increases, the maximum localization error of the system
gradually decreases, which proves that our scanning method can
reduce a lot of the error and provides a more reliable localization
result.

9) Storage Consumption of Different Methods: Another fac-
tor that restricts the application of mobile application platforms
is storage. We set a space of 10x10 meters to analyze the
storage overhead of each method. Both HAIL and Sextantrely on
landmarks for their work. The greater the number of landmarks,
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TABLE IT

STORAGE CONSUMPTION OF DIFFERENT METHODS
Methods | Label xdgdhj:;i‘:& Map images | Num of Features | Size
ARGILS | Camera Location 9 20 160 800KB
HAIL Landmark Location | § 30 7840 4693KB
Sextant Landmark Location | 5 30 None 900KB
GLN Camera Location 25 100 None None
PixLoc None 9 20 9088 264MB

the greater the workload of collecting images and the higher the
localization accuracy. We assume that the number of landmarks
in this scenariois 5, and the results are shown in Table II. The data
in the table are averaged from the data in the corresponding pa-
pers. In terms of storage consumption, ARGILS exhibits a lower
rate than HAIL, Sextant, and PixLoc. Among these, PixLoc
necessitates the storage of the matching relationship between
features, resulting in a particularly high memory consumption.
In contrast, GLN employs a classification-based localization net-
work, obviating the necessity for a feature database for matching.
However, an additional map structure and coordinates must be
stored. In the area of 100m?2, our method requires only 800 KB
of storage, which is lower than other methods and can also meet
the needs of mobile terminals in terms of storage.

10) Performance Under Varying Light Conditions: We sim-
ulate changes in indoor lighting conditions by adjusting the
image’s contrast coefficient to represent both light and dark
scenarios. In Fig. 22(a), we establish two control groups, one
with strong lighting and the other with dim lighting, within the
setting depicted in Fig. 14(c). The localization accuracy results
are illustrated in Fig. 22(b). ARGILS is able to maintain better
localization ability when facing the overall change of ambient
light brightness. This resilience is attributed to the strong gen-
eralization capabilities of EfficientNet and DistanceGAN.

11) Ablation Study on Loss Functions: In this experiment,
we evaluate the impact of different loss function combinations
on model performance using displacement retrieval error as
described in Section V-B-2. The following configurations were
tested: 1) Adv Loss, 2) Adv + MSE Loss, and 3) Adv + MSE +
Triplet Loss. The corresponding mean errors for these configu-
rations were 0.9476 m, 2.7805 m, and 4.0220 m, respectively.

As shown in Fig. 23, the configuration with “Adv + MSE +
Triplet Loss™ achieved the lowest mean error. This combination
enables the model to better learn feature representations by min-
imizing content discrepancies (via MSE) and enforcing stronger
feature distance discrimination (via Triplet Loss).

The Adv Loss performs the worst, as adversarial loss only
brings the generated feature distribution closer to the real fea-
tures, without refining the feature distinctions across different
distances. When MSE Loss is added, the generated features
are forced to be closer to the ground-truth features, resulting in
improved localization performance. Finally, adding Triplet Loss
further enhances feature discrimination, making the differences
between features at varying distances more pronounced, which
in turn leads to better retrieval and localization accuracy.

The performance degradation observed in configurations
without “Triplet Loss” (i.e., “Adv + MSE” and “Adv” alone)
underscores the critical importance of learning distance-based
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relationships. The experimental results confirm the effectiveness
of the proposed loss function combination.

VIII. CONCLUSION

In this paper, we proposed a robust and effort-efficient indoor
localization system that featured low computation and storage
costs for clients, and low site survey costs on the server side,
thus it could be deployed on a large scale for online map
providers, e.g. Google map, Baidu Map and etc. Basically,
our system explores the possibility of efficiently generating the
localization features from a sparse collected feature database
and proposes a distance-constraint generative neural network to
do so. Then, we propose an orthogonal feature decomposition
and localization framework, which not only greatly reduces the
costs of feature generation in arbitrary angles, but also reduces
the localization computation and storage cost in the clients. In
addition, a scanning mechanism is proposed as an extension
to achieve on-device video localization, making our method
more practical, eliminating the impact of various obstacles on
localization, and improving the robustness of the system. Real
implementation experiments in three different scenarios have
been conducted. Compared with the state-of-the-art methods,
our system can obtain an average localization accuracy of 2.5 m,
which is 48% better than the baselines, and only requires 25%
of the site survey density. In addition, all the operations could
be finished in less than 400 ms on mobile devices.
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In future investigations, it is important to implement robust
and efficient localization for heterogeneous mobile devices and
varying focal lengths. For example, using monocular vision
depth estimation to directly obtain device location information.
Localization models applicable to zoom scenarios need to be
investigated, enabling users to freely choose their focal lengths
and improving user experience and system pervasiveness.
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