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Abstract—ARM TrustZone is widely deployed on commercial-off-the-shelf mobile devices for secure execution. However, many Apps
cannot enjoy this feature because it brings many constraints to App developers. Previous works have been proposed to build a secure
execution environment for developers on top of TrustZone. Unfortunately, these works are still not fully-fledged solutions for mobile
Apps, especially for emerging intelligent Apps. To this end, we propose LEAP, which is a lightweight developer-friendly TEE solution for
mobile Apps. LEAP enables isolated codes to execute in parallel and access peripheral (e.g., mobile GPUs) with ease, flexibly
manages system resources upon different workloads, and offers the auto DevOps tool to help developers prepare the codes running
on it. We implement the LEAP prototype on the off-the-shelf ARM platform and conduct extensive experiments on it. The experimental
results show that Apps can be adapted to run with LEAP easily and efficiently. Compared to the state-of-the-art work along this
research line, LEAP can achieve an average 3.57× speedup in supporting intelligent Apps using mobile GPU acceleration.

Index Terms—Security and Privacy Protection, ARM trustzone, trusted execution environments.
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1 INTRODUCTION

Secure execution is always a high-priority objective for
mobile Apps processing sensitive data. The TrustZone [1]
technology, as the de-facto Trusted Execution Environment
(TEE) design for mobile devices, has been introduced to
fulfill this demand for years since 2004. Although it provides
some basic security services (e.g., secure storage) for mobile
Apps, we observe that most Apps cannot utilize it for secure
execution since it brings many constraints to third-party
App developers, which we detail as follows.

First, TrustZone is designed for vendors rather than
third-party App developers. App developers must seek
cooperation with vendors if they want to put their sensitive
code into TrustZone. Besides, adopting TrustZone requires
substantial development efforts and TEE knowledge for
developers. Vulnerabilities could be otherwise created and
lead to the TEE compromising [2]. Moreover, computing
resources in TrustZone are extremely limited [3]. As an
example, OP-TEE [4], a popular open-source trusted OS
used in TrustZone, only supports applications to run with
a single thread, and the total memory available for all
trusted applications in TrustZone is 16MB. Such restriction
significantly impedes the adoption of TrustZone in the App
security. Additionally, rapid App development has dramat-
ically reshaped the mobile computing landscape since 2004.
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Emerging App security demands (e.g., secure mobile GPU
accessing) are not recognized or supported in TrustZone.

Research works have been recently carried out to build
security solutions for developers on top of TrustZone
(shown in Figure 1). These TEE-based solutions are carefully
designed to isolate the execution of protected codes in
the Normal World (NW) of ARM architecture rather than
in the Secure World (SW) to allow developers to deploy
their protected codes. TrustICE [5] first attempts to move
the APP ENV 1 out of SW. It only allows one App ENV
to run and meanwhile freezes the whole Rich OS (ROS),
sacrificing the efficiency. PrivateZone [6] lifts the restriction
of frozen ROS by introducing another layer of isolation in
NW. OSP [7] further enables the parallel running of mul-
tiple APP ENVs with a hypervisor. However, introducing
a hypervisor would bring system overheads and security
risks. Most recently, SANCTUARY [8] leverages the new
TrustZone feature to get rid of the hypervisor. However, it
can only support limited parallel APP ENVs. More details
on related works are provided in Section 8.

Motivation. However, neither the vanilla TrustZone
nor the existing NW-side TEE solutions are full-fledged
developer-friendly TEE designs for mobile Apps, especially
for emerging intelligent Apps (or deep learning Apps).
Nowadays, most developers deploy their deep learning
(DL) models, which are often intellectual properties, with
their DL Apps on devices to provide real-time intelligent
services. According to recent studies [9], [10], it is feasible to
steal such valuable on-device models from these DL Apps.
As countermeasures, DarkneTZ [3] tries to protect DL mod-
els in TrustZone. However, due to the limited memory, it can
only protect the last few layers of the DL model in TrustZone
to defend against membership inference attacks [11], leav-

1. We define the APP ENV as the securely isolated execution envi-
ronment for protected codes in this paper.
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Fig. 1. High-level design comparison between our work LEAP and its related works. ROS is the Rich OS (e.g., Android) in the Normal World of
ARM. APP ENV is the securely isolated execution environment for protected codes. Boxed labeled with green texts are key framework components
in each TEE-based solution. Key feature differences are annotated in each sub-graph.

ing other layers unprotected. Based on SANCTUARY [8],
the latest NW-side TEE solution, OMG [12] can protect
the whole model in TEE. However, developers’ essential
requirements (e.g., GPU acceleration and easy adaptation)
are still unconsidered.

The NW-side TEE solutions above, although balanc-
ing the security and usability for TrustZone, are not fully
developer-friendly for the following reasons. First, their
secure environments (APP ENVs) lack comprehensive sup-
port for the App code execution, specifically the lightweight
and parallel isolated environments, secure peripheral access,
and flexible resource management. Lightweight is essential
for high performance, and parallelism is an important strat-
egy for optimizing performance on the multi-core system,
which is widely used by smartphones; more and more
codes that require protection contain operations of accessing
peripherals, e.g., receiving a cloud-pushed patch inside the
APP ENV or securely accessing the mobile GPU for deep
learning; adapting resources to online demands is necessary
for parallel isolated environments to reduce resource wast-
ing and meanwhile survive in burst workloads. Second, the
difficulty of solution adoption is not considered for App de-
velopers, especially developers of existing Apps. Usually, it
is required to manually modify App codes according to the
target TEE-based solution and calculate the resource assign-
ment beforehand. This inconvenience greatly de-motivates
App developers to take any action on the solution adoption.

Therefore, we propose LEAP, a developer-friendly TEE
solution securing critical operations of current and emerging
DL Apps. LEAP is lightweight in design and addresses the
deficiencies in existing NW-side TEE solutions on the ARM
architecture. LEAP can balance the security strength and
App usability for six developer-friendly goals below:

(S1) Secure Isolation. The App sandbox (i.e., APP ENV
in LEAP) must be isolated with a hardware guarantee.

(S2) Secure Peripherals. The codes inside App sandbox
can access peripherals easily and securely, such as the mo-
bile GPU and WiFi, without worrying about sniffing from
ROS or codes in other App sandboxes.

(S3) Secure Boot. Each App sandbox can be properly
measured for integrity and verified for genuineness before
booting.

(U1) Parallel Environment. Multiple lightweight App
sandboxes can be isolated and run simultaneously to serve
for parallel-running tasks.

(U2) Flexible Resource. The computing resource occu-
pied by App sandboxes can be adjusted on demand in order
to prevent resources from being wasted or underutilized.

(U3) Easy Adoption. The auto DevOps 2 tool can be
provided for App developers to conveniently adopt LEAP
to protect critical executions in their Apps.

Design. LEAP introduces four developer-friendly de-
signs. (1) A lightweight App sandbox isolated by hardware
is used to run the sensitive codes, and multiple isolated
sandboxes can run in parallel with performance almost
as same as the bare-metal case. LEAP proposes a novel
policy that is utilizing virtualization to enforce isolation without
virtualizing any resource. Under this policy, LEAP enables
the sandbox to run on bare hardware resources without
introducing a hypervisor and enforces the isolation through
only managing stage-2 page tables, which avoids the TCB
bloating and performance degradation. (2) To enable Apps
to securely access peripherals, LEAP introduces a novel
exclusive peripheral design that ensures a peripheral al-
ready assigned to a sandbox cannot be accessed by any
others. LEAP achieves this through the key observation that
ARM adopts Memory-Mapped IO (MMIO), which enables us
to control IO access through managing stage-2 page tables.
Currently, our exclusive peripheral design cannot support
all peripherals, and we plan to make it more general in the
future. (3) LEAP’s resource management allows sandboxes
to adjust their computing resources, i.e., CPU cores and
memory, according to different workloads. LEAP enables
the computing resources to be flexibly adjusted with low
overhead. (4) For an existing DL App, a DevOps tool, App
Adapter, is introduced to automatically convert it into a
LEAP-adapted App through static program analysis. The
core function of the App Adapter is to extract the DL mod-
ules (containing DL models and inference codes) from the
DL Apps and repackage them for execution in the isolated
sandbox.

We implement a prototype of LEAP on the off-the-shelf
hardware platform, Hikey960, and we show its efficiency
and flexibility through extensive experiments. According to
our experimental results, DL Apps can be easily adapted to
LEAP, and their sensitive codes can be executed efficiently.
Compared to the state-of-the-art work [8], LEAP shows
excellent benefits in supporting both resource management
and peripheral access, e.g., it improves memory utilization
by 21.74% and outperforms 3.57× better through secure
GPU accessing when severing DL inference tasks.

In summary, our contributions are as follows:

1) We propose a lightweight NW-side TEE, LEAP,
which can balance both security and usability

2. The DevOps refers to the splitting, packaging, and deployment of
applications.
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Fig. 2. ARM TrustZone & Stage-2 Address Translation.

specifically for mobile Apps. Compared to existing
solutions, LEAP can support lightweight parallel
isolated App execution environments featuring flex-
ible resource management.

2) We propose an exclusive mechanism to ensure se-
cured peripheral access for sensitive application
codes. In particular, we enable secure GPU access,
a key requirement for accelerating secure DL tasks.

3) We implement the LEAP prototype on the off-the-
shelf ARM platform without any hardware change.
We perform comprehensive analyses and experi-
ments to demonstrate that LEAP is efficient in de-
sign, comprehensive in support, and convenient in
adoption.

2 BACKGROUND

2.1 ARM TrustZone
ARM TrustZone [1] is a security extension of ARM proces-
sors. As shown in Figure 2, it divides the System-on-Chip
(SoC) into two worlds, namely Normal World (NW) and
Secure World (SW), to securely manage CPU, memory, and
peripherals. A CPU can run in either NW or SW under the
control of the NS-bit on AXI-Bus. Secure boot [13] is used
to ensure the image integrity of the system during the boot
procedure. TrustZone Address Space Controller (TZASC),
e.g., TZC-400 [14], can isolate the memory by reserving
the memory region that can only be accessed in SW. By
configuring TrustZone Peripheral Controller (TZPC) [15],
peripherals can be isolated, that is, preventing the devices
from being accessed from NW. Virtualization in the normal
world (EL2) has been introduced since ARMv7, and since
ARMv8.4, the TrustZone architecture has evolved with the
introduction of virtualization in the secure world (SEL2).

2.2 Stage-2 Address Translation
In ARMv8 architecture, the CPU can execute in four differ-
ent exception levels (EL0-EL3). Both worlds have the user
space (EL0), the kernel space (EL1), and the virtualization
extension (EL2). EL3 (monitor mode) is used to respond
to world switching. Please note that there is typically no
hypervisor running in EL2 on mobile devices due to perfor-
mance overhead. Therefore, EL2 is usually disabled during
the booting procedure.

There are two address translation stages when the virtu-
alization extension is enabled. In the first stage, the virtual
machine (VM) translates the virtual address (VA) to an
intermediate physical address (IPA) based on its page table.
The second stage is called stage-2 translation, in which the
IPA will be translated to the physical address (PA). The base
address of stage-2 page tables is stored in the VTTBR EL2
register, which can only be accessed in EL2 or a higher ex-
ception level. Typically, the hypervisor controls VMs access-
ing PA through managing stage-2 page tables. Moreover,
the second stage cannot be bypassed even if the MMU is
turned off by the VM. ARM offers SMMU [16] to translate
IPA to PA for the devices which have the Direct Memory
Access (DMA) capability. The hypervisor can manage the
page tables for SMMU and control the memory access space
to prevent the DMA attack.

3 OVERVIEW OF LEAP
In this section, we first introduce all system components of
LEAP, including their roles and functions. We then illustrate
how these components interact with each other, a.k.a. the
LEAP workflow, throughout the life-cycle of a LEAP sand-
box. In the end, we briefly highlight the key designs, which
are elaborated with more details in the next section.

3.1 Security Model
Before diving into LEAP design, we first explain our se-
curity model. We consider the scenario of protecting the
execution of sensitive App codes on the ARM platform
with hardware security enforcement. Sensitive codes (i.e.,
security-critical codes) may want to access peripherals and
contain valuable App assets like closed-source DL models.

We assume the Rich OS (ROS) in NW could be malicious
or compromised by the adversary. The goal of the adversary
is to compromise the execution integrity or access the App
assets under protection. We assume the drivers used in
LEAP sandbox for peripheral access are benign and bug-
free. We also assume some sensitive codes requiring our
protection are curious about the execution of other sensitive
codes. For example, they may try finding out what sensing
data others collect.

We only trust the low-level features of the ARM archi-
tecture, including the secure boot, TrustZone, and stage-
2 translation. Similar to previous work [17], we do not
consider physical attacks like the cold boot [18] and the bus
monitoring attacks [19], [20], Deny-of-Service (DoS) attack,
and cache side-channel attacks [21], [22], [23], [24].

3.2 System Components
Figure 3 illustrates the high-level design of LEAP. LEAP
consists of four components, i.e., LEAPROS, LEAPSOS,
LEAPSW, and LEAPATF. They are software-based and lever-
age existing ARM hardware features so that LEAP can be
easily deployed on existing mobile devices. ROS is the
legacy OS running in the NW, e.g., the Android. An App
adapting LEAP is called pAPP, and its sensitive codes under
LEAP protection is called sc-pAPP. The LEAP sandbox
is a sensitive-code execution environment protecting the
sc-pAPP and LEAPSOS running inside it. The sc-pAPP is
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Fig. 3. LEAP System Overview. The green components are LEAP parts.

allowed to exclusively access peripherals when needed.
Multiple LEAP sandboxes can run in parallel beside ROS
with minimal performance influence.

LEAPROS is a ROS kernel module. It loads images,
i.e., sc-pAPP and LEAPSOS, maintains metadata, and pre-
allocates resources for LEAP sandbox. A pAPP can create
and interact with its sc-pAPP via LEAPROS. Before switching
peripherals or adjusting resources, LEAPROS prepares the
resources and the hardware configuration information to be
verified by LEAPATF.

LEAPSOS is a tiny kernel we tailored and modified from
Linux. It is used to provide a minimal runtime inside the
LEAP sandbox for a sc-pAPP, named sandbox OS (SOS).
LEAPSW interacts with LEAPROS on behalf of sc-pAPP
for resource management. LEAPSW also leverages the rich
Linux driver ecosystem to serve various peripheral access
needs from sc-pAPP.

LEAPSW is a kernel module in TOS installed by the
device vendor. Note it is a part of our Trust Computing Base
(TCB). LEAPSW is responsible for key storage and checking
the integrity of the LEAP sandbox image before launching
it.

LEAPATF is a patch to the vanilla ARM Trusted
Firmware. It also belongs to our TCB. LEAPATF enforces
LEAP sandbox isolation and exclusive peripheral access,
manages resources pre-allocated by LEAPROS, and launches
LEAP sandbox.

Except for system components, LEAP also provides an
automatic DevOps tool for App developers. This tool, which
is called App Adapter, can make the DL App adaption of
LEAP transparent to its developer, which requires no source
code access and extra development efforts. More details are
in Section 4.1.

3.3 System Workflow
This part introduces the workflow of LEAP throughout
the life-cycle of a sandbox. We describe how to create,
initialize, and terminate a LEAP sandbox LEAPSOS and how
the LEAPSOS accesses peripherals exclusively and adjusts
resources.

Creation. A LEAP-adapted App can be created directly
from scratch by a developer or converted from an existing
App with the assistance of our DevOps tool. In the convert-
ing case, our tool first transforms the App into two parts,
the NW part pAPP and the security-critical part sc-pAPP,
with a clean and neat interface between them. Next, it packs

the sc-pAPP and LEAPSOS together as an encrypted image
and signs it on behalf of the developer. When installing
the LEAP-adapted App, this signature is securely stored by
LEAPSW for verification purposes in the initialization stage.

Initialization. The LEAPSOS initialization is triggered
when the pAPP calls its sc-pAPP counterpart. Once
LEAPROS takes upon the pAPP’s request, it pre-allocates
resources, i.e., CPU core and memory, for this LEAPSOS.
Next, LEAPROS loads the encrypted packed image, which
is prepared in the creation stage, into the allocated memory
and notifies LEAPATF to lock the resources. Then, LEAPATF

asks LEAPSW to verify the integrity. If the verification is
passed, LEAPSW will decrypt it as well. LEAPATF then se-
curely launches it. sc-pAPP will respond to pAPP ’s request
after booting. Attestation can also be performed during
runtime in a similar way to previous works [6], [25].

Peripheral Access. ROS holds all peripheral resources
by default. When a sc-pAPP is willing to access one pe-
ripheral, LEAPSOS makes a request to LEAPROS. LEAPROS

checks whether the peripheral is being used, and if it is
free, LEAPROS unloads the device driver (if needed) and
informs LEAPATF to unmap it from ROS and map it to
the corresponding LEAPSOS via managing the stage-2 page
table. Next, LEAPSOS loads the device driver from ROS,
verifies its integrity, and installs it. Then the sc-pAPP in
it can use the peripheral. Note that this peripheral cannot
be accessed by other LEAPSOS and ROS until it is released
from currently-engaged LEAPSOS. To release the peripheral,
LEAPSOS unloads the device driver, notifies LEAPATF to
give it back to ROS, and LEAPROS can bring the peripheral
back to ROS.

Resource Adjustment. LEAPSOS is able to request and
release resources, i.e., CPU cores and memory, on de-
mand for the sake of efficiency and elasticity. When one
LEAPSOS requests more resources, LEAPROS will prepare
the resources and notify LEAPATF to check whether these
resources are secure to be used. Once the check passes,
LEAPATF will assign these resources to the corresponding
LEAPSOS and enforce the resource isolation. When releasing
resources, LEAPSOS will remove the resources from itself
and notify LEAPATF to return the resources to ROS securely.

Termination. When pAPP no longer needs the sc-pAPP,
pAPP sends the shut down request to the LEAPSOS through
LEAPROS to inform LEAPSOS that it can shut itself down.
Then, LEAPSOS informs LEAPROS of its termination and
asks LEAPATF to shutdown it. LEAPROS then asks LEAPATF

to release all resources of the terminated LEAPSOS. Released
resources are, in the end, returned to ROS.

3.4 Developer-Friendly Designs

In this part, we present several key designs applied in
LEAP and the principles behind them at a high level. These
designs are driven by the App developer’s needs. Addi-
tionally, they practice the minimalism design principle and
could be an alternative to the current TrustZone hardware
evolution.

Automatic App Adapter. The tedious DevOps experi-
ence is one of the key reasons why TrustZone and TEE-
based solutions are not popular among App developers.
Furthermore, many developers may not be familiar with the
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Fig. 4. The processing pipeline of the App adapter.

system programming. Thus, we introduce an auto DevOps
tool to transform an App, even without source codes, into a
LEAP-ready App.

Isolated Parallel Execution. There may be multiple
Apps running in parallel that require protection. At the
same time, we want to keep the codes in SW, which is part
of our TCB, minimal and fixed without change. Therefore,
the attack surface can be reduced. Additionally, we rely on
hardware security features to fight against high-privileged
threats.

Exclusive Peripheral Management. We design a
lightweight mechanism to guarantee that a sc-pAPP can
access peripherals exclusively. Moreover, App developers
do not have to worry about the availability of peripheral
drivers. Currently, our design can only support some de-
vices whose drivers are loadable kernel modules.

Flexible Resources Adjustment. Different computing
resources may be required when facing different workloads,
so it is hard for a fixed resource assignment to balance task
efficiency and resource utilization. The computing resources
inside a LEAP sandbox can be flexibly adjusted upon re-
quests from the corresponding pAPP. It is challenging to be
achieved given that we get rid of the resource virtualization
to gain efficiency inside the App sandbox.

4 DESIGN

The App developer-friendly design realized by LEAP pri-
marily has four techniques, the automatic App adapter
used offline for the App preparation, the isolated parallel
execution used for the execution of sc-pAPP, the exclusive
peripheral management used for secure peripheral access,
and flexible resources adjustment used for resource allo-
cation during runtime. Our isolated parallel execution is
achieved by only leveraging a small set of existing ARM
hardware features - the stage-2 translation, ARM monitor
mode, and SEL1 (EL1 in SW) - so that this design can be
easily applicable to existing ARM devices.

4.1 Automatic App Adapter
This App adapter is designed to minimize the develop-
ment efforts when applying for the LEAP protection on
an existing App. The automation offers to eliminate the
adaption cost concern of non-expert developers. It is cur-
rently designed for emerging DL Apps and is intended to

demonstrate why the DevOps should be considered, so it
does not cover all DevOps demands. The current working
scenario of our App Adapter is to extract DL modules
(containing DL models and inference codes) from DL Apps.
We plan to make it more complete in the future.

Figure 4 illustrates the processing pipeline of the App
adapter. Our tool works on the App binary, which has more
challenges. To convert a DL App, its developer only has to
prepare a configuration file pointing out the entry points of
the sensitive codes. To protect the valuable deep learning
model with corresponding inference code, developers just
list the APIs triggering the inference task in the configura-
tion file for our App adapter. In such file, entry points are
listed line by line in the format of <the class of the function
definition: the function prototype>. Then our App adapter
primarily performs two tasks. The first task is to extract the
indicated sensitive codes (i.e., sc-pAPP) and the model files
out from the targeted normal App, while the second task is
to repack sc-pAPP for running in the LEAP sandbox.

More concretely, the AppSli module performs call graph
analysis and data flow analysis on the App and extracts the
security-critical part, i.e., all codes called by entry points
and their related model files. LibGen generates a dynamic
linking library responsible for the communication between
the normal part and the security-critical part according to
entry points in the configuration file and the sliced codes.
Next, the generated library and the App’s normal part are
repacked as a pAPP to run on ROS. Therefore, all run-
time communications between the normal and the security-
critical parts will be forwarded through the generated dy-
namic linking library. As to the security-critical part, the
App adapter compiles it into an executable java program,
packs the java program with a LEAPSOS, and encrypts it to
produce a LEAP sandbox image. The encrypted image will
be signed for integrity verification during secure boot. The
signature and the decryption key of the encrypted image
will be stored in LEAPSW as the whole App is installed on
the user’s device. The encrypted image will be stored on the
disk. We provide more technical details about AppSli and
LibGen as follows.

4.1.1 AppSli Module

The AppSli module is built upon the java optimization
framework, Soot [26]. Soot is suited for performing various
static analyses and instruments on Android Apps. We first
decompile the App and locate all targeted entry points.
We then build call graphs of the App and traverse all
reachable codes from these entry points. We also perform
the backward data-flow analysis to maintain the depen-
dency of traversed codes. For example, if a developer-
defined object type is used in the traversed code, we need to
maintain a copy of the class definition in the traversed code.
By iteratively performing backward data-flow analyses, all
security-critical code can be found and ready for repackag-
ing. Additionally, since all data dependencies are taken into
consideration, the paths where model files are located can
be analyzed. And all these model files will also be extracted
and ready for repackaging.
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Fig. 5. Current solutions to support parallel isolated executions. The virtualization-based design supports parallel sandboxes through the hypervisor,
e.g., OSP [7]. SANCTUARY [8] is a TZASC-based solution, and it can support at most 3 sandboxes in parallel. The last one is the high-level design
of our methods. (A detailed design of LEAP can be found in Figure 3.) We detail the difference of LEAP from these works in Section 8.

4.1.2 LibGen Module
The LibGen module is used to produce a dynamic linking
library, i.e., a communication proxy, which is integrated
with the normal part of an App and connects with the
corresponding security-critical part. In this library, one
component is the code to create and initialize the LEAP
sandbox. The sandbox creation functions first notify the
LEAPROS to prepare one CPU core and default 128M
memory to launch the sandbox. Then LEAPSW verifies
the integrity of the prepared image containing the sc-
pAPP before booting. One component is responsible
for library and model file dependency. The dependent
Android native library in the sensitive part, e.g., OpenCL
for GPU access, will be replaced with a corresponding
library in Linux. All model files are copied into the
sandbox, and the paths to read the model file will
be replaced with the paths in the sandbox. The other
component is to generate all new entry points for passing
parameters between the pAPP and sc-pAPP, with the rely
on LEAPROS. We present an example in Figure 4. For the
entry point <org.tensorflow.lite.Interpreter:
public void run(Bytebuffer input, byte[]
output);> provided by the developer, LibGen
generates a function <public static native byte[]
nativeRun(ByteBuffer input)>. This generated
function can pass the input data to sc-pAPP through the
APIs provided by LEAPROS. When packing the pAPP, all
calls to entry points of the original APP will be replaced
with calls to generated ones.

4.2 Isolated Parallel Execution
It is not intuitive to design an isolated parallel environment,
especially given efficiency and security. Figure 5 illustrates
some current works that can support parallel isolation, but
they have deficiencies in terms of efficiency and security.
A virtualization-based design in NW requires a hypervisor,
which would bring system overhead to mobile devices
when sc-APP is running [7]. SANCTUARY [8] is a TZASC-
based (i.e., TZC-400) solution, however, it can only support
at most 3 parallel sandboxes. Because TZC-400 can sup-
port at most 8 protected memory regions and each sand-
box needs to occupy two protected regions. 3 In contrast,
our design is not limited by this and can easily support
more parallel sandboxes. Besides, to prevent cache direct
attack [8], SANCTUARY proposes to disable the L2 cache,
which greatly impacts system performance. We propose a

3. Secure World also needs to occupy one protected memory region.

cache protection mechanism to prevent cache direct attack
without degrading performance. More details are presented
in Section 4.2.3.

4.2.1 Resource Isolation

Figure 5 shows the LEAP’s design of parallel isolated exe-
cution. LEAP guarantees that the computing resources, i.e.,
CPU core and memory, used by each sandbox are isolated
from ROS and other sandboxes. However, such isolation is
not based on virtualizing computing resources. Specifically,
LEAP proposes a novel policy that is utilizing virtualization
to enforce isolation without virtualizing any resource. Under this
policy, LEAP lets each sandbox run on its own physical CPU
core and memory, and it only enforces the resource isolation
through managing stage-2 page tables, which shares a simi-
lar idea to NoHype [27].

CPU Isolation. LEAPATF dynamically removes one
physical CPU core from ROS for one LEAP sandbox through
Linux CPU hotplug [28] technology. Once the CPU core is
removed, ROS will no longer be able to use that core until
the core is returned back by the LEAP sandbox. At the same
time, each LEAP sandbox can only run on the CPU core
assigned to it. In other words, it cannot use other cores that
do not belong to it.

Memory Isolation. Since ROS and the LEAP sandbox
run on different physical cores, we achieve this goal by
managing different stage-2 page tables for them. Specifically,
LEAP prepares different sets of stage-2 page tables for the
CPU cores that belong to different runtimes. One CPU core
and a block of memory will be prepared by LEAPROS for one
LEAP sandbox, and LEAPATF creates another set of stage-
2 page tables and performs an identity mapping, i.e., the
virtual address always equals the physical address, for the
core. At the same time, LEAPATF performs an unmapping
operation for the stage-2 page tables of ROS to prevent ROS
from accessing the memory space.

Parallel Support. LEAP assigns different sandboxes to
run on different physical cores and allocates separate mem-
ory for them. As a result, every LEAP sandbox can only
access its own CPU and memory resources. Since current
mobile devices usually equip many cores (e.g., 8 cores) and
more than 4GB of memory, it makes LEAP able to support
parallel sandboxes easily. For example, for a mobile device
with 8 CPU cores, LEAP can support at most 7 sandboxes
to run in parallel. However, there is still a challenge we
need to solve that there are conflicts between multiple
OSs since there is no hypervisor. LEAP overcomes this
challenge through checking the initialization operation for
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the resource at kernel booting and carefully modifying the
kernel codes to change its behavior to avoid conflicts. We
provide implementation details in Section 6.1.

Communication Support. Since ROS and every sand-
box run on their own CPU and memory resources, we
enable ROS and a sandbox to communicate with each
other in two ways. First, the request can be sent between
them through inter-processor-interrupt (IPI). LEAPROS and
LEAPSOS would know the request type according to the IPI
number. Second, the data can be transferred between them
through shared memory. LEAP reserves a block of shared
memory for every sandbox to communicate with ROS. The
shared memory can be accessed by both the ROS and LEAP
sandbox. LEAPSOS also can read external files from ROS
through shared memory. The shared memory is mapped in
the stage-2 page tables of both the ROS and one sandbox,
and more details can be found in Section 4.4.1.

4.2.2 Secure Boot

We design an integrity verification mechanism to ensure
the secure boot of LEAP sandboxes. Before launching one
sandbox, LEAP will verify the integrity of the encrypted
runtime image (containing LEAPSOS and sc-pAPP). The
signature of the runtime image is produced in the creation
stage and securely stored by LEAPSW.

Before LEAPSW performs verification, the prepared im-
age to be verified will be first isolated from ROS, which is
accomplished by LEAPATF through managing stage-2 page
tables in EL3 directly. LEAPSW is responsible for performing
the integrity verification for the image, and it only needs to
provide some basic secure services, i.e., key storage, encryp-
tion/decryption, and hashing, which keeps a minimal TCB
in TrustZone. When verification passes, the LEAPATF will
boot the LEAP sandbox.

To boot one LEAP sandbox, LEAPATF first starts the core
in EL3 and creates another set of stage-2 page tables for
it. After all the CPU context is correctly initialized in EL3,
LEAPATF lets the core go back to EL1 instead of EL2 when it
returns from EL3 since there is no hypervisor in EL2. Then,
LEAPSOS will start to boot in EL1 and run sc-pAPP.

4.2.3 Enhanced Security

As we mentioned before, NW-based memory isolation solu-
tions are vulnerable to the cache direct attack [8]. Hence,
an attacker may directly read the memory content from
the shared L2 cache. To defend against this attack, SANC-
TUARY [8] proposes two solutions, i.e., hardware change
or disabling the L2 cache, that both have limitations. A
hardware change is not available to current hardware and
simply disabling the L2 cache would greatly decrease sys-
tem performance (We show this in Section 6.2).

LEAP defends the direct cache attack by proposing a
cache sanitization mechanism. We observe that the L2 cache
is usually physically indexed on ARMv8 [29]. Hence, LEAP can
prevent the attacker from successfully translating the virtual
address to the physical address through unmapping stage-2
page table entries. However, the stage-2 translation entries
may be cached in the translation lookaside buffer (TLB).
Therefore, before booting one LEAP sandbox or adjusting
a memory region to it, LEAPATF clears these TLB entries

that map to the newly prepared memory space, which has
almost no impact on system performance in practical use.

4.3 Exclusive Peripheral Management
4.3.1 Design Challenges
It is non-trivial to design a peripheral management mech-
anism when considering IO security and usability (e.g.,
develop effort and efficiency). We show design challenges
by proposing two straw-man solutions (Figure 6) and ex-
plain why they fail to meet the peripheral management
requirements.
Straw-man Solution 1. The first possible design is to redi-
rect all peripheral IO to the Secure World and leverage the
hardware-assisted Secure IO. As shown in Figure 6a, all
devices are mapped into the Secure World, and all device
management modules, e.g., device drivers, are installed into
the Trusted OS.

This seemingly simple solution has two serious design
flaws. Usability. All peripheral drivers needed by App
developers should be installed into Secure World in this
design. It is at least a hard task, if not an impossible task.
Porting or implementing a driver for special Trusted OSs
like OP-TEE [4] is difficult and time-consuming even if the
corresponding driver for ROSs like Android is open-source.
In reality, peripheral drivers are often very complicated and
closed-source, rendering the Secure-World driver porting or
developing impossible. Additionally, the system program-
ming effort for arbitrary IO redirecting is heavy as well,
given that there are so many types of peripheral driver
implementations. Therefore, this possible design puts too
much burden on the shoulder of application developers.
Security. Another important reason is that adding so many
drivers to Secure World will lead to the TCB explosion.
Straw-man Solution 2. The second possible design is to
introduce a driver monitor module, shown in Figure 6b, to
ensure there is only one Normal-World driver enabled for
a device at a time. When a driver wants to use a device,
it should make a request to the driver monitor. After being
allowed, it will be enabled and access the requested devices.
The driver monitor keeps scanning the normal world to
detect if any driver works illicitly.

This design also has two problems. Usability. It is very
costly to scan the kernel memory to detect if any driver
works. As reported in DeepMem [30], recognizing a kernel
object takes about 13 seconds even in a PC environment,
whose computation ability is more powerful than the mobile
devices. The overhead of such a design is not acceptable.
Security. The Normal World OS, e.g., ROS and LEAPSOS,
might access the peripheral through directly reading or
writing a specific IO address without using a driver. That
is, any device access without drivers will bypass the driver
monitor and fail this method.

4.3.2 Our Design
Our design follows three principles. (1) Developers should
be able to easily access all off-the-shelf peripherals in LEAP
sandbox, just as in the Normal World. (2) The peripheral
access should be lightweight and efficient. The overhead of
peripheral access from the sandbox should not be greater
than that from ROS. (3) Only one Normal-World execution,
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(a) Straw-man Solution 1. All periph-
eral accesses are forwarded to the Se-
cure World.

(b) Straw-man Solution 2. Secure
World is responsible for ensuring the
system so that only one Normal World
driver can access the device at a time
access.

(c) Our Solution. Exclusive peripheral management
designed by LEAP. The core idea is using stage-2
page tables to ensure only one Normal World driver
can access certain peripheral at a time.

Fig. 6. Straw-man solutions of peripheral management and our solution. Note only our solution can meet the security and usability requirements in
our scenario.

i.e., ROS or a sandbox, can access a peripheral at a time.
Please note this exclusive access design is a trade-off be-
tween system security and usability. Designing a scheme
that allows multiple sandboxes to access peripherals in
parallel would increase system complexity and make it hard
to ensure system security.

Figure 6c illustrates our peripheral management mech-
anism, and our novel design abides all of the above three
principles. The first principle is accomplished by using a
tailored Linux kernel as LEAPSOS so that all the device
drivers in the Linux ecosystem can be directly reused. When
compiling LEAPSOS, these drivers will be compiled into
loadable kernel modules (LKMs), and LEAPSOS can also
verify their integrity when installing them. The last two
principles are achieved through manipulating the stage-
2 tables. The stage-2 page tables are normally used to
enforce memory isolation. However, the key observation of
our novel design is that ARM adopts Memory-Mapped IO
(MMIO), which provides us with the opportunity to control
IO access through managing stage-2 page tables.

Recall there may be multiple sandboxes and ROS par-
allelly run in LEAP on different cores, LEAPATF sets dif-
ferent stage-2 page tables for each of them. When in use,
the LEAPSOS can request LEAPROS for the device. If the
device is free, i.e., no process is using it, LEAPROS performs
the device switching procedure as described in 3.3. The
LEAPATF assigns the device to the requester by modifying
its stage-2 page tables on the fly. If the requested device has
been occupied by execution, the requester has to try later or
wait until the device is available before it can gain access
permission to it. When a sandbox uses a device, all other
sandboxes’ and ROS’s page table entries of this device will
be marked as invalid to ensure exclusive access. However,
since every sandbox can directly operate the peripheral,
there is a challenge that there are conflicts when devices
are switched. We need to carefully modify the kernel codes
to avoid conflicts.

The stage-2 page tables that control the peripheral access
are stored in a block of physical memory reserved by
LEAPATF. This memory region is never mapped to ROS
or LEAPSOS to prevent them from accessing it. The stage-2
page table takes 2MB and 4KB mapping for memory space
and IO space, respectively. The page tables of each execution
only use less than a 2MB memory region to address and use

peripherals. In our prototype system, there are 8 CPU cores.
So the reserved memory region is only 16M.

Device Requirements. Currently, our design cannot sup-
port all the peripherals on mobile devices, and it requires the
peripherals to satisfy the following two requirements. First,
the device needs to be relatively independent. Specifically,
its device driver can be compiled as a LKM, and the driver is
not shared by other devices. 4 Second, ROS does not always
need to occupy the device. In other words, the device can
have free time (e.g., a few seconds or longer) when it is
not used by the ROS so that other sandboxes can have
opportunities to use it. Although some devices cannot be
supported (e.g., the USB device), many common peripherals
(e.g., Bluetooth and WiFi) on mobile devices can meet these
requirements.

The two requirements serve the purpose that we need
to unload the driver from ROS during device switching.
Unloading the driver from ROS has two advantages: First,
it can avoid the conflicts that may be caused when the
same device is initialized by two drivers. Second, it prevents
ROS from trying to access the unmapped device through
the device driver. Here, we assume that when the device
driver is unloaded, ROS will not try to access the unmapped
device. 5 Since unmapping the device is just an enforced
access control policy, it cannot guarantee that ROS will not
attempt to access the unmapped device.

GPU Access. Unfortunately, the GPU device cannot meet
the second aforementioned requirement since ROS may
always need to use the GPU to perform GUI rendering.
For example, Android uses GPU to perform GUI rendering
about every 16ms (60fps). As a result, the GPU device is
always busy that the GPU device driver cannot be unloaded.
If we do not unload the GPU driver in ROS, the ROS will
still try to access the unmapped GPU through the driver,
which will cause a stage-2 page fault. As there is no code in
EL2 to handle it, the page fault will lead to a GUI crash and
system reboot.

To this end, we design a scheme that allows LEAPSOS to
access GPU securely without unloading the GPU driver in

4. Some device drivers cannot be compiled as a LKM and some
devices may share the same device driver, e.g., a USB device may rely
on the USB bus driver, which is shared by many devices. LEAP cannot
support these devices yet.

5. A malicious ROS may still try to access the device without the
device driver if it will, however, this will lead to a stage-2 page fault.
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Fig. 7. Sandbox memory layout and dynamic memory scheme design.

ROS. The core idea is to prevent ROS from accessing GPU
anymore when GPU is switched out. Specifically, we utilize
the feature that GPU can be suspended to stop the ROS
operating on GPU temporarily. We let LEAPROS issue GPU
suspending through the GPU driver, and all rendering tasks
of ROS will be briefly suspended until the GPU is resumed.
When the GPU is suspended, ROS will not call the GPU
driver to access GPU anymore. As a result, LEAPSOS can
use GPU driver to safely use GPU for computing in its own
memory space because mobile GPU uses main memory as
computing memory.

In general, for the GPU device, we replace the driver
unloading operation with the suspending GPU operation,
and other operations remain unchanged for device switch-
ing. Suspending the GPU is aimed at preventing ROS from
trying to access the unmapped GPU, which will cause a
stage-2 page fault. Whether ROS chooses to suspend GPU or
not, it cannot access the unmapped GPU since unmapping
the GPU is enforced by LEAPATF. One more thing we
need to mention is that suspending the GPU will lead to
a brief frozen GUI for the ROS since GPU is temporarily
unavailable. The GUI rendering will get resumed when the
GPU is returned. We will discuss this problem in detail in
Section 7.

4.4 Flexible Resources Adjustment
Dynamic memory adjustment and CPU cores can effectively
balance the system workload and improve the system re-
sources’ utilization, especially for emerging DL Apps. We
detail the resources management in two parts, i.e., the dy-
namic memory adjustment and dynamic CPU adjustment.
There are two challenges that need to be solved. First, the
resources need to be adjusted with a low overhead for a
low latency requirement. Second, we need to avoid memory
fragmentation during memory adjustment.

4.4.1 Dynamic Memory Adjustment
LEAP proposes two mechanisms, i.e., memory pool sharing
and continuous allocation policy, to allocate LEAP memory.
The memory pool sharing is used to manage the shared
memory between ROS and LEAP sandbox. Although ROS
and LEAPSOS can send requests to each other through IPI,
they need to use shared memory to transfer the data be-
tween them. The continuous allocation policy is responsible
for the preparation and adjustment of LEAPSOS memory
on the fly. Figure 7 illustrates these memory management
schemes.

The memory pool sharing maintains all data communi-
cation channels, i.e., shared memory, in the same continuous
memory region. LEAPROS continuously allocates a new
shared memory region from this pool when booting a new
LEAP sandbox. Each sandbox has a fixed and exclusive
communication channel. The start address and the size of

the shared memory are fixed once the sandbox is started. In
order to prevent the LEAP sandbox from accessing others’
communication channels, LEAPATF will not map others’
communication channels to this sandbox with the access
control guaranteed by the stage-2 page table.

When booting a new sandbox, LEAPROS will first pre-
allocate a memory region with the default size, e.g., 128MB,
for it. When one LEAPSOS needs to increase its memory
size, it notifies LEAPROS how much extra memory it needs,
and LEAPROS will try to prepare enough memory for it.
LEAP can define a maximum memory size that can be
used by every sandbox. The continuous allocation policy
ensures that LEAPROS always allocates continuous physical
memory for each LEAPSOS so that the whole memory space
of the LEAPSOS is always continuous, no matter how many
adjustments are performed. Ensuring the physical continu-
ity of the memory region can reduce system maintenance
costs and the complexity of TCB. A trivial method to ensure
continuous memory is to reserve a large block of memory
for each sandbox. However, the reserved memory cannot
be used by ROS, which wastes system resources when
there is no sandbox running. Therefore, We apply the Linux
Contiguous Memory Allocator [31] (CMA) technology to
weakly reserve several continuous memory blocks for LEAP
sandboxes.

When dynamically adjusting memory size, LEAPATF

always checks the legality of the dynamic changed memory
region, including memory address and memory size, to
ensure that it is physically continuous with the memory
space of current LEAPSOS, it does not exceed its memory
limitation, and it does not overlap with other memory
regions.

To determine when to perform memory adjustment,
LEAPSOS always monitors its memory usage. When it finds
that there is not enough memory, it requests ROS for
more memory. And it gives the dynamic memory back
to ROS when that memory is freed. In our prototype
implementation, we hook the function in the kernel, i.e.,
security vm enough memory mm, to detect whether there
is insufficient memory.

4.4.2 Dynamic CPU Adjustment
A LEAPSOS is assigned with one CPU core by default at
startup, and LEAPROS will set the core to a maximum
frequency for LEAPSOS to improve performance. However,
pAPP can assign more CPU quota to LEAPSOS so that it
can request more cores from ROS on demand. This dynamic
CPU adjustment design can achieve a good system work-
load balance. When adjusting the CPU cores, the LEAPSOS

can also request for a big core or little core according
to its need to optimize the overall execution and energy
consumption.

Basic Design. The basic CPU adjustment design is also
based on Linux CPU hotplug [28] technology, and it works
as follows. When LEAPSOS wants to adjust its CPU cores,
it issues a request to LEAPROS. LEAPROS checks whether
LEAPSOS is allowed to use more cores and if there is any
available core. If any core is available, LEAPROS notifies
LEAPATF to remove the core from ROS. LEAPATF clears
the core’s cache to prevent data leakage and securely shut-
downs the core. In the end, LEAPSOS requests LEAPATF
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for the core through CPU hotplug interface, and LEAPATF

initializes the core with the correct context and boots the
core for that LEAPSOS. The LEAPSOS will give the surplus
cores to ROS through a similar procedure if it finds that
the CPU is not busy anymore. LEAPSOS always holds at
least one core, i.e., the booting core, since it will never be
adjusted.

Optimization. The CPU adjustment design described
above requires one physical shutdown and one booting
process every time the core is adjusted, which may cause
unnecessary system overhead. Therefore, we design an op-
timization method in LEAPATF, which is more lightweight.
Every time before adjusting one core, LEAPROS first informs
LEAPATF that it will perform an adjustment, then it uses
the CPU hotplug interface to ask LEAPATF to shut down
the core as usual. LEAPATF will perform the cache cleaning
operation for that core. However, it will not physically shut
down the core but let the core enter a busy waiting state to
wait for LEAPSOS requesting for it. When LEAPSOS requests
for the core, LEAPATF can quickly initialize the context for
the core and adjust it to LEAPSOS. We show the benefits of
this optimization in Section 6.3.

To determine when to adjust the CPU core, the LEAPSOS

always monitors its CPU usage. If LEAPSOS finds that its
CPU is busy for a while and its core numbers are within
its CPU quota, it requests ROS for one more core. On
the contrary, when LEAPSOS finds that the surplus core is
free for a while, it releases the core back to ROS. In our
implementation, there is a kernel thread in LEAPSOS that
continuously monitors the CPU usage of a sandbox. If it
finds that the average usage of the CPU is above 99% for
2 seconds, it performs a CPU adjustment operation. When
LEAPSOS finds that the average usage of the surplus core
is below 40% for 5 seconds, it releases the surplus core to
ROS.

5 SECURITY ANALYSIS

In this section, we discuss how LEAP defends against possi-
ble attacks under our security model (See Section 3.1). Since
LEAP provides hardware-assisted isolation among ROS and
different sandboxes, the malicious codes, whether in the
ROS or a LEAP sandbox, cannot access data or compromise
executions in another LEAP sandbox.

Malicious LEAPROS Manipulation. A compromised
ROS can manipulate the LEAPROS installed by LEAP. The
LEAPROS is responsible for preparing the sandbox image
and pre-allocating the resources. So malicious manipula-
tions lie in the sandbox creation and resources management.
When creating a new sandbox, the compromised LEAPROS

may prepare malicious LEAPSOS and sc-pAPP images to
compromise secure services. LEAP copes with this attack
with a Secure Boot mechanism (See Section 4), which can
ensure the LEAP sandbox images’ integrity before launch-
ing the image. The malicious ROS can also misconfigure
resources during resource adjustment. To be specific, when
a sandbox increases its memory, ROS can maliciously pre-
pare a memory region for the requester that has already
been used by another sandbox. LEAP solves this kind of
attack by checking the configurations’ legitimacy through
LEAPATF (See Section 4.4). Similarly, LEAPATF also ensures

that a compromised ROS cannot allocate a CPU core that
has already been occupied by a sandbox to another one
through verification when creating sandboxes or adjusting
CPU cores.

Peripheral IO Eavesdropping. The compromised ROS
cannot successfully access the IO addresses of a peripheral
occupied by a LEAP sandbox. It is because these addresses
are blocked in the stage-2 address translation, which is
controlled by the LEAPATF. At the same time, the IO address
translation for this device is also blocked for other LEAP
sandboxes. Therefore, one LEAP sandbox cannot success-
fully perform IO Eavesdropping to other sandboxes, either.
For some devices capable of DMA, LEAP, except using
the same method to block peripheral DMA, replies on the
ARM’s SMMU [16] to prevent bypassing the main memory
access control. Thus, a compromised ROS or a malicious
LEAP sandbox cannot eavesdrop on the data in a peripheral
occupied by a LEAP sandbox.

Cache Direct Attack. As discussed in SANCTUARY [8],
a compromised ROS may access the memory region to be
allocated to the sandbox to cache it in the L2 cache. After the
memory adjustment, the compromised ROS tries to access
the sandbox’s memory space through the L2 cache. LEAP
proposes a cache sanitization technique (See Section 4.2) to
defend against this kind of attack by clearing the CPU cores’
TLB entries related to the newly-allocated memory. For
different LEAP sandboxes, the memory space that belongs
to one sandbox is never mapped to other sandboxes. So one
sandbox cannot directly access the address space of another
sandbox, nor can it read the memory space of another
sandbox through the cache because it can never successfully
translate the address space that belongs to others to a valid
physical address which is required by L2 cache indexing.

6 EVALUATION

In this section, we describe the experimental setup, followed
by a comprehensive evaluation of LEAP by answering the
following three questions:

1) How does our isolation design perform when com-
pared with other isolation methods?

2) How does the design of the flexible resource help
the sandbox balance the workload?

3) How does our exclusive peripheral design perform
when accessing peripherals?

Last, the case study of a real-world GPU-accelerated ma-
chine learning application demonstrates how easily and
efficiently an application can run with LEAP.

6.1 Experimental Setup
Hardware. We implemented a prototype of LEAP on
Hikey960, a widely-used development board with the same
SoC as many COTS smartphones (e.g., Huawei P10). The
board equips with eight cores (4 Cortex-A53 + 4 Cortex-
A73) with big.LITTLE architecture, a 4GB physical memory
of which 3.5 to 4GB address space is used for peripheral
I/O address space. For peripherals, a Mali-G71 GPU, a WiFi
module, and a Bluetooth module are available.

Software. Android 9.0.0 r31 (kernel version 4.14) and a
popular open-source Trusted OS, OP-TEE (v3.4.0) [4], were



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 11

TABLE 1
Booting time, memory consumption, and shutdown time comparison.

Measurement LEAP SANCTUARY KVM/ARM
Booting (ms) 532 503 760

Mem. consumption (MB) 128 128 135
Shutdown (ms) 629 625 680

chosen as the LEAP’s ROS and TOS, respectively. We used
the standard ARM Trusted Firmware patched with LEAPATF

in EL3. The whole LEAP system has 4,689 lines of code
(LOC), including LEAPATF (539 LOC), LEAPSW (651 LOC),
LEAPROS (1,327 LOC), LEAPSOS (972 LOC), and DevOps
(1,200). LEAPSOS, the LEAP sandbox’s OS, utilized a cus-
tomized Linux kernel (v3.13) whose size is only about 9MB.
We implemented a dynamic memory adjustment mecha-
nism for it according to the Linux memory hotplug [32].
Conflicts Elimination. In order to avoid conflicts between ROS
and LEAP sandbox’s OS, we put extra engineering effort.
First, the initialization code of GIC was removed since there
is no need for a sandbox to initialize GIC, which has already
been done by the ROS. Second, the code for setting system
clocks was modified to prevent the sandbox from resetting
the system clocks when switching devices. Last, the in-
memory file system ramfs was used in LEAPSOS, which
can also reduce the booting time. The sandbox can read an
external file from ROS through LEAPSOS. Please note that
these modifications only need to be done once and they are
not OS version specific. Therefore, our modification efforts
can be reused.

Methodology. We compared our LEAP to a
virtualization-based solution, KVM/ARM, and a
SANCTUARY [8] prototype. KVM/ARM is a virtualization
method that is available on our ROS, 6 and SANCTUARY [8]
is the current state-of-the-art work of TEE in Normal World.
The software environment, i.e., ROS, TOS, and ATF, of the
three prototypes are exactly the same. We cross-compiled
qemu-kvm for ROS to boot virtual machine (VM). Since
SANCTUARY is not open-sourced, we reproduced it
following the paper [8] with one modification for a fair
comparison. SANCTUARY uses a micro-kernel OS in its
sandbox, while the reproduced SANCTUARY prototype
uses the same sandbox OS as our LEAP. Note that this
modification will not hurt its design idea. Unless specified,
we enabled the L2 cache for SANCTUARY. 7 All three
prototypes used the same hardware settings. Since LEAP
sets a fixed CPU frequency for sc-pAPP, we set the CPU
frequency to a fixed maximum frequency for all prototypes,
and we let the CPU cool down between every experiment.

6.2 Sandbox Execution Performance

We evaluated the execution performance of the sandbox at
both kernel and application levels. As a result, we conclude
that our design has a small initialization overhead and a
high communication efficiency with ROS. It also proves that

6. We cannot compare with OSP [7] because it is not open-sourced
and its design is based on ARMv7 architecture. Since it is also related to
KVM/ARM, the results can also reflect its performance to some extent.

7. Please note that enabling the L2 cache for SANCTUARY would
improve its performance, however, it may suffer from cache direct
attack. More details are in Section 4.2.3.

TABLE 2
Data copy time of different data sizes through shared memory.

Data Size Time (ms) Data Size Time (ms)
64KB 16.58 4MB 39.46
256KB 17.69 16MB 110.65
1024KB 22.46 64MB 323.42

introducing stage-2 translation only brings a negligible over-
head (maximum 2%), and our lightweight sandbox enables
a high application performance when compared with other
solutions.

6.2.1 Kernel Performance
We first evaluated the booting time, memory consumption,
shutdown time as well as communication performance with
ROS. Moreover, we run LMbench [33] in the sandbox to
measure the system call performance.

The results of booting time, memory consumption, and
shutdown time of three prototypes are shown in Table 1. It
shows that all prototypes can be booted within one second.
This is because the kernel is tailored, and the in-memory
file system, ramfs, is used. We notice that LEAP is slightly
slower than SANCTUARY since LEAP needs to set up stage-
2 page tables during the booting procedure. However, LEAP
still performs better than KVM/ARM, which indicates that
LEAP is lighter than virtualization. For memory consump-
tion, since we need to boot a Linux kernel, all three proto-
types are configured to start with 128MB of memory. From
Table 1, we can see that LEAP and SANCTUARY consumed
128MB memory which is not surprising since they allocated
all memory before booting. Interestingly, KVM/ARM con-
sumed 135MB of memory which is even larger than the
required memory, and we think this is because KVM also
needs some extra memory to manage the VM.

We also measured the performance of the two types
of communication, i.e., IPI and shared memory, between
the sandbox and the ROS. We only do this measurement
for LEAP since our SANCTUARY prototype has the same
communication design with LEAP because how its shared
memory is implemented is not explained in its paper [8],
and our KVM/ARM prototype does not support shared
memory between host and guest. First, we measured the
time cost, which starts at the ROS (the sandbox) making a
request and ends at the sandbox (the ROS) receiving the
request through IPI. As a result, it takes 23.89us for the
ROS to communicate with the sandbox and 53.12us for the
sandbox to communicate with the ROS, respectively. For
shared memory performance, we report the data copy cost
between the ROS and the sandbox with different data sizes.
The results are shown in Table 2. It shows that data can be
quickly transferred between the ROS and a sandbox which
enables a high data communication efficiency.

Last, the system call performance in the sandbox is
shown in Figure 8, and the results are normalized. In
this experiment, we also measured the performance of
SANCTUARY with its L2 cache disabled (”SANC W/O
L2” in Figure 8). As is shown, compared to LEAP, the
performance overhead on system call of the KVM/ARM is
about 28% on average. The overhead is even up to 133%
for the exec system call. It indicates that LEAP has a better
performance than virtualization since it does not virtualize
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TABLE 3
DL models used in our experiments to benchmark runtime performance

and their specifications.

Model Name GFLOPs Params (M) Model Size (MB)
MobileNetv2 [34] 0.32 3.5 14
GoogleNet [35] 1.51 13 27

AlexNet [36] 0.72 61.1 233
ResNet18 [37] 1.82 11.69 45
ResNet50 [37] 4.12 25.56 98
ResNet101 [37] 7.85 44.55 170
ResNet152 [37] 11.58 60.19 230

Inceptionv4 [38] 12.31 42.68 163

Fig. 8. LMBench benchmark results.

any resource. Compared with SANCTUARY, LEAP has a
similar performance to SANCTUARY when its L2 cache
is enabled. However, SANCTUARY is much slower (up to
78.89×) than LEAP when the L2 cache is disabled. Stage-
2 translation overhead. Compare LEAP with SANCTUARY
when its L2 cache is enabled, we can also see the overhead
brought by the stage-2 translation since SANCTUARY does
not introduce stage-2 translation. Figure 8 indicates that the
overhead introduced by the stage-2 translation is negligible.
The maximum overhead brought by stage-2 translation is
about 2%.

6.2.2 Application Performance

For the application performance, we measured the perfor-
mance of two types of tasks, i.e., encryption and DL model
inference. For the encryption, we measured the encryption
performance of different data sizes. For model inference,
we measured the inference time of 8 popular convolution
neural network (CNN) models (See Table 3) to perform a
classification task. 8

The encryption spec was set to AES-256-CBC. We use
MNN [39] as our DL framework for model inference, and
these models are available from MNN or converted from
Caffe Model-Zoo [40]. The benchmarks on the three plat-
forms were all performed on the same physical big core.
Since qemu-kvm provides virtual cores to a VM, we set the
qemu-kvm to provide one virtual core to a VM and bind
it to a physical big core for fairness. We also measured the
performance of SANCTUARY with its L2 cache disabled.

The encryption performance with different data size and
the inference time of 8 DL models on three prototypes are

8. We use CNN models to perform benchmarks due to their popular-
ity on mobile devices.

Fig. 9. Encryption performance comparison with different data sizes.

Fig. 10. Inference time comparison with different DL models.

shown in Figure 9 and Figure 10, respectively. LEAP per-
forms about 5% and 10% on average better than KVM/ARM
in encryption and DL inference task. LEAP has a similar
performance to SANCTUARY when its L2 cache is enabled.
It also shows that SANCTUARY performs worse than LEAP
when its L2 cache is disabled, e.g., 10.58× slower on average
in DL inference, which indicates that SANCTUARY failed to
have a good balance between security and efficiency.

Again, it proves that introducing stage-2 translation
brings negligible overhead. The average overhead is only
about 1%. We think that such a small overhead benefits
from two aspects. First, LEAP does not virtualize the CPU
core, which avoids the overhead introduced by virtual core
context switching. Second, LEAP adopts big page mapping
(i.e., 2MB mapping) for the stage-2 page table. Compared
with 4KB mapping, big page mapping could bring better
performance because it will bring fewer TLB entry conflicts.

6.3 Flexible Resources Performance

To demonstrate the benefits of flexible resources, we profiled
the resource adjustment cost and evaluated its performance
with different workloads. We only compare LEAP with
SANCTUARY below since both our KVM/ARM and SANC-
TUARY prototype do not support flexible resources. The
results conclude that our flexible resource design can be
performed in an efficient manner, and it enables a high
application performance as well as high resource utilization.

6.3.1 Resource Adjustment Cost

We profiled the resource adjustment cost. For CPU ad-
justment, we measured the adjustment time for both big
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Fig. 11. Task completion time comparison with different image numbers
and CPU quotas.

and little cores. For memory adjustment, we measured the
adjustment time for a block size of 16MB memory.

Table 4 shows the experimental results. The ”w/ opt”
and ”w/o opt” represents enabling CPU adjustment op-
timization or not. It shows that all adjustment operations
can be performed within 80ms. Moreover, it proves that
our CPU adjustment optimization can reduce the system
overhead. It performs about 1.48× to 2.51× better with our
optimization because it avoids physically turning off the
CPU core during adjustment. The ability to adjust resources
at such a small cost demonstrates the flexibility and effi-
ciency of LEAP in terms of flexible resources adjustment.

6.3.2 Flexible Resource Benefits
To show the benefits of flexible resource adjustment under
different workloads, as an example, we built two test ap-
plications and measured their performance under different
workloads.

First, a DL application used ResNet50 to perform the
classification task. We enabled dynamic CPU adjustment
for LEAP, and we set LEAPSOS to increase its core when
it detected that the CPU was busy for more than 2 seconds.
We changed the total number of images for classification
and recorded the total inference time with different CPU
quotas.

Figure 11 shows how dynamic CPU adjustment can help
applications balance different workloads. LEAP 1 or LEAP
2 represents that LEAPSOS is allowed to increase 1 or 2

cores dynamically, and the inference time for different image
numbers is normalized to SANCTUARY. When there is only
one image needed for classification, dynamic CPU adjust-
ment will not be triggered, so LEAP and SANCTUARY have
the same performance. However, as the number of images
increases to 5, LEAP starts to dynamically increase one
CPU core to speed up inference, resulting in 1.1× to 1.8×
speed up as the number of images increases. Furthermore,
when 2 CPU quotas are allowed, LEAP starts to request for
the second dynamic core when there are 10 images to be
classified, and it provides up to 2.9× acceleration compared
to SANCTUARY when there are 40 images.

Second, we tested a ciphertext query App that accepts
the key provided by a user as a query keyword, performs
the query in the encrypted file with key-value data, and
returns the results to the user. To speed up the query
procedure, the query App caches the decrypted data in the
memory. The encryption method we chose is the same as

TABLE 4
Flexible resource adjustment cost profiling results.

Operation Resource Type Time (ms)

Increase

little core w/o opt 137
w/ opt 55

big core w/o opt 199
w/ opt 79

memory 54

Decrease

little core w/o opt 72
w/ opt 42

big core w/o opt 92
w/ opt 62

memory 56

TABLE 5
The execution time and resource utilization rate with different memory

allocation strategies.

Memory Size (MB) Time(s) Resource utilization
30 35.50 98.98%
50 34.43 96.37%
60 27.76 93.43%
80 22.58 85.52%
100 17.63 70.39%

the secure storage encryption method provided by OP-TEE,
which uses AES-128-CBC to encrypt files, and the size of
each encrypted block is 256 bytes.

We generated 10 encrypted files containing different key-
value pairs of different sizes, ranging from 10MB to 100MB,
and we also randomly generated 10 query sequences for
each file. We measured the time to complete 10 queries for
each file and recorded the total time cost to complete all
queries for 10 files. In both SANCTUARY and LEAP, we set
the cached memory size to 10MB. However, the query App
on LEAP can dynamically adjust its memory size, which is
set at a 16MB granularity to handle files with different sizes.

It took about 19.24 seconds to finish all queries for LEAP
and the time for SANCTUARY was 61.64 seconds. LEAP
performs about 3.20 × faster than SANCTUARY. Although
it is possible to make SANCTUARY allocate a large memory
size in advance to improve efficiency, however, this will
greatly waste resources because most of these memories are
not used most of the time. We measured the SANCTUARY
performance with different memory allocation sizes and
compared its efficiency and resource utilization with LEAP.
The result is shown in Table 5.

As Table 5 shows, when SANCTUARY increases the
pre-allocated memory size, it indeed improves efficiency.
However, resource utilization also decreases. The resource
utilization rate of LEAP is 92.13%. Compared with SANC-
TUARY, LEAP is faster than SANCTUARY by 1.44 × in the
case of a similar resource utilization rate (93.43%). When
SANCTUARY and LEAP have similar performance, SANC-
TUARY’s resource utilization rate is lower than LEAP by
21.74%. More importantly, when security-critical Apps need
to handle a variety of workloads, it is difficult to choose
an appropriate resource allocation strategy in advance to
balance resource usage and application performance well.

6.4 Peripheral Access Performance

We only evaluated the WiFi, Bluetooth, and GPU devices
on our prototype since their device drivers are loadable.
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TABLE 6
Peripheral mapping/unmapping time profiling results.

Operation Device ROS Time (ms) Sandbox Time (ms)

Mapping
GPU 55 121
WiFi 193 188

Bluetooth 117 125

Unmapping
GPU 35 23
WiFi 43 37

Bluetooth 33 29

Fig. 12. GPU (CPU) performance comparison with different DL models.

We used these devices to evaluate the LEAP’s performance
in accessing peripherals. These devices cannot be securely
accessed in our KVM/ARM and SANCTUARY prototype
since our qemu-kvm does not support virtualizing these
devices and SANCTUARY relies on TrustZone to perform
secure IO. 9 Hence, we first evaluate our peripheral map-
ping/unmapping overhead, then we compare the periph-
eral access performance of LEAP with native ROS, and the
results show that our peripheral access introduces negligible
overhead.

6.4.1 Peipheral Mapping/Unmapping Overhead
To know the peripheral switching overhead between the
ROS and a sandbox, we measured the mapping and unmap-
ping overhead of different peripherals, i.e., GPU, WiFi, and
Bluetooth module, in the ROS and a sandbox, respectively.
The unmapping procedure starts at the kernel unloading the
driver (or suspending for GPU), and it ends at the LEAPATF

finishing the unmapping device address space in the stage-
2 page table. The mapping procedure starts at the LEAPATF

performing the mapping device address space, and it ends
at the kernel loading the driver (or resuming for GPU).

The experimental results are shown in table 6. The
results show that the mapping or unmapping operation in
the ROS and a sandbox can be performed within 200ms,
which indicates that these devices are able to be switched
between the ROS and a sandbox with little overhead.

6.4.2 Peipheral Performance
GPU Performance. We measured the inference time of 8
different DL models on GPU for both LEAP and ROS
to evaluate the GPU performance. The benchmark results
are presented in Figure 12. It also includes the inference
time of SANCTUARY running these models on big cores

9. Although they are possible to be configured to TrustZone through
TZPC, however, OP-TEE lacks these device drivers.

Fig. 13. iPerf networking benchmark results.

Fig. 14. Bluetooth performance comparison with different resolution.

for comparison. It can be found that the performance of
accessing the GPU from LEAP is comparable to that of
accessing the GPU from ROS. That is, LEAP does not incur
performance overhead to the GPU access. More importantly,
this experiment shows the significant advantages brought
by peripheral access. Compared with SANCTUARY, LEAP
performs about 3.91× to 5.01× better than SANCTUARY
through accessing GPU securely.

Network Performance. We run iPerf [41] to benchmark
the network throughput for LEAP and ROS when they
utilize the WiFi module. At the same time, we additionally
run iPerfTZ [42] to measure the network throughput for OP-
TEE, and it can be referenced as the network performance of
SANCTUARY since SANCTUARY relies on TOS to perform
IO. iPerfTZ [42] is an open-source tool that measures the
OP-TEE network throughput by forwarding network data
to a client process running in NW. Note that it is not a
secure way, but we have to measure OP-TEE in this way
because it lacks a WiFi driver. The benchmarks were run in
the same settings. We set the socket buffer size to 128KB and
tested the network throughput with different TCP windows
sizes. Results are presented in Figure 13. The performance
of accessing the network in LEAP is comparable to that of
accessing the network in ROS. However, for OP-TEE, the
network throughput of this naive solution is only about
12.5% that of LEAP. The poor network throughput is due to
the frequency context switch between ROS and TrustZone
to transfer the network data.

Bluetooth Performance. It is a common scenario that
IoT devices offload their computing tasks to mobile devices
through Bluetooth. To measure the Bluetooth performance,
we set the ROS/sandbox to use Bluetooth and established
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(a) Darknet (CPU Version). (b) NCNN (CPU Version).

(c) MNN (CPU Version). (d) MNN CPU vs. GPU

Fig. 15. Inferring time with different settings.

a connection with it using another Hikey960 board. The
two boards established a Bluetooth connection with each
other through the L2CAP protocol. We transferred images
of different resolutions between two boards and measured
the time required for the transfer. The experimental results
are shown in Figure 14. It also shows that LEAP has a
comparable Bluetooth performance with ROS.

6.5 Case Study
We perform case studies on how a representative App, a
DL inference using the mobile GPU acceleration, adopts the
LEAP for secure model execution. By applying LEAP, the
model of the demo App can easily avoid being stolen and
defend against other security attacks. We have selected three
examples. The first one is an MNN-based [39] intelligent
App that is deployed on LEAP platform through our LEAP
adapter automatically; the other two intelligent Apps are
developed from scratch with NCNN [43] and DarkNet [44]
framework. Below we will first study the results of auto-
matic adaptation and then evaluate the system performance
in these three examples.

Deploy with LEAP Adaptor. Please recall that our LEAP
Adaptor works on the existing DL Apps, and all operations
are done on the intermediate code. This demo App (210,000
lines of intermediate code) is a DL inference of image classi-
fication with the Mali mobile GPU acceleration, representing
a popular emerging App category. The sensitive part to
protect contains the DL model, and its inference framework
is MNN. We adopt this intelligent App to our LEAP through
the LEAP Adaptor, described in Section 4.1. Our LEAP
Adaptor takes 11s to complete the adaptation, occupies 1G
of memory, and uses two CPU cores. The Adaptor adds only

80 lines of code to the original App. The generated sc-pAPP
has a total of 856 lines of code.

Develop from scratch. We also adapt two example Apps
manually to show how to develop a LEAP-enabled App
from scratch. The split is completed in the following steps.
First, we add an integrated LEAPROS API lib into the App
project. Second, we add the function of booting the LEAP
sandbox in the JNI code, and the code will be called when
the App starts. Third, we modify part of the JNI code that
switches the local DL framework, i.e., NCNN and Darknet,
call to the ”remote” DL framework call of the sandbox.
Therefore, when there is an inference request, it will be
forwarded to LEAP sandbox, the inference procedure will
be performed in LEAP sandbox, and the inference result will
be sent back. The application with the modified JNI code
is called pAPP. Finally, we package the sensitive codes as
sc-pAPP into the ramfs of a pre-distributed LEAP sandbox
image.

We evaluate the LEAP’s performance with these end-
to-end demo Apps. We develop several applications with
different models and DL frameworks and run the appli-
cations with both the CPU and GPU of the prototype.
In addition to conducting the measurement on LEAP, We
train four models, i.e., SqueezeNet [45], MobileNetV2 [34],
DenseNet201 [46], and ResNet50 [37], for each framework.

Figure 15 shows the performance of running the demo
applications in both LEAP. The CPU version means run-
ning the demo application with the big or little cores on
Hikey960. And more than one cores represent the situation
that it dynamically requests CPU cores from ROS for infer-
ence. When the demo applications deployed in LEAP uses
the CPU to perform the inference, the inference speed for
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the big core is 2.9× to 3.4× faster than the little core for
DarkNet, and 2.5× to 4.4× for NCNN, and 2.3× to 3.1×
for MNN, respectively. Moreover, LEAP’s flexible resource
adjustment enables the inference speed on the big core to
improve 1.2× to 1.8× for DarkNet, 1.6× to 1.8× for NCNN,
and 1.4× to 1.6× for MNN.

Without loss of generality, we compare the inference
speed of CPU and GPU based on MNN. As SANCTUARY
can only run with a single CPU core without GPU access,
it will show how our secure GPU access can accelerate the
DL Apps’ performance. As shown in Figure 15d, when the
demo Apps run with a little core to perform inference with
GPU, it is 2.9× to 10.8× faster than the little core and 2.2×
to 3.8× faster than the big core. When the demo Apps run
on a big core with GPU, it is 7.7× to 14.8× faster than the
little core and 2.2× to 5.22× (3.57× on average) faster than
the big core.

7 LIMITATION

General DevOps. At present, our automatic DevOps tool
can only apply to DL Apps to protect their valuable models.
It only supports Java language since mobile Apps are mostly
developed in Java. Although mobile Apps may also contain
some native C/C++ libraries, supporting C/C++ language
is not the scope of this work. Besides, our automatic DevOps
tool is not fully automated since there is also some manual
work that needs to be done by developers for it. However,
the manual work is easy for developers since they only
need to point out the entry points of the sensitive codes.
Designing a general automatic DevOps tool for other types
of Apps will have new challenges to be solved. For exam-
ple, sc-App may rely on various Android shared libraries
or system services, which should be resolved correctly in
automatic DevOps. We plan to make the DevOps tool more
general in our future work.

Peripheral Access. LEAP does not allow multiple sand-
boxes to access one peripheral in parallel, which may bring
some constraints. First, it would cause a frozen GUI for ROS
when one sandbox uses the GPU for the secured DL tasks.
However, the frozen GUI lasts only a short time (usually
hundreds of milliseconds) because the DL models used
on mobile devices are usually lightweight. If such a short
frozen period is unacceptable or the DL tasks require quite
a long time for inference, the App can also choose to use
the CPU for the secured inference. Performing the secured
inference on the CPU would not cause a frozen GUI, and our
flexible CPU resource adjustment can also enable an efficient
secured DL inference. Second, peripherals cannot be shared
simultaneously, which may reduce the potential benefits
of parallelism. As we aimed to provide high security, we
sacrificed some system usability. The other limitation is that
LEAP cannot support all peripherals on mobile devices,
which prevents it from being a general solution. We plan to
make it to be a general design for more devices and enable
peripherals securely shared by parallel sandboxes at a finer
granularity in our future work.

Malicious Driver. In this work, we assume that the
driver used in LEAPSOS is benign and bug-free. Although
a malicious or buggy driver can not affect other sandboxes,
it may compromise the sandbox it resides in. To prevent this,

we can refer to some driver isolation works [47] to prevent
malicious drivers from compromising the sandbox.

Sandbox Density. Our sandbox isolation is based on an
exclusive CPU design. Therefore, the maximum number of
sandboxes is limited by the number of CPU cores on the
device. We plan to increase the sandbox density in future
work to support more parallel environments.

8 RELATED WORK

8.1 TEE designs based on TrustZone
NW-Side TEE Solutions. The first kind of work devotes
itself to creating TrustZone-assisted isolation in NW to
improve the TrustZone’s usability. Figure 1 illustrates some
representative works of this type, i.e., TrustICE [5], Private-
Zone [6], OSP [7], and SANCTUARY [8]. We will compare
these works with our LEAP one by one. TrustICE designs
an isolated computing environment in NW without using
a hypervisor. However, when the isolation environment
is running, ROS and other isolation environments will be
frozen. In addition, the TrustICE sandbox cannot adjust
its resources on-demand flexibly. PrivateZone proposes an
isolation environment in NW and enables security-critical
code to run in the isolated environment instead of run-
ning in SW. PrivateZone can only maintain one isolation
environment, so codes from different developers run in one
sandbox. The lack of isolation among different developers’
codes can cause security concerns. In addition, PrivateZone
can neither flexibly adjust resources to balance the workload
nor can it guarantee the peripheral access’s security. OSP
enables virtualization in NW to provide SGX-like enclaves.
This work uses a hypervisor to support the enclave’s isola-
tion, and the hypervisor will bring overhead when the sen-
sitive code is running [7]. In addition, OSP cannot support
flexible resource adjustment and secure peripheral access.
SANCTUARY aims to provide a NW isolation environment
through TZASC [48], a hardware mechanism of TrustZone
used to control memory access permission. Compared with
LEAP, SANCTUARY can only support limited parallel ex-
ecution. Moreover, it does not support secure peripheral
access and flexible resource. There is another work, vTZ [17],
which provides virtual TrustZone on cloud servers. Differ-
ent from LEAP, vTZ is designed to provide each VM with
its own virtual TrustZone rather than making it easier for
applications in these VMs to enjoy TrustZone. Moreover, its
virtualization-based method is oriented to cloud computing
scenarios rather than mobile scenarios, which have more
limited computing resources.

SW-Side TEE Solutions. The second kind of work tries
to improve the SW’s usability and security. Work [49] slices
the security-critical part of an App by annotating the sensi-
tive data in the source code and porting the sliced part into
SW. TrustShadow [50] explores how to run legacy Apps in
SW. It introduces a runtime to help legacy Apps run in SW
without any modification. secTEE [25] proposes an Enclave-
like design in SW to isolate the security-critical services
from other SW software. TEEv [51] and PrOS [52] introduce
the virtualization technology to the SW through software-
based isolation. However, these works import the third-
party executable code into SW and enlarge the TCB. A larger
TCB is inherently more vulnerable to compromise, and the
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code imported by a third-party developer may exacerbate
the security issues. Our LEAP has a tamper-resisted TCB.
After development, no executable code will be added to the
SW.

8.2 DL Model Protection on Mobile Device
DarkneTZ [3] is the first work that attempts to utilize
TrustZone to protect the DL models. Unfortunately, due to
the limited resources, it can only put the last few layers
of the model in TrustZone to defend against membership
inference attacks [11]. Different from it, LEAP can enable to
protect entire model in TEE without resource restrictions,
which has a more powerful protection capability. Recently,
OMG [12] managed to protect the whole DL model based
on SANCTUARY [8]. However, it cannot satisfy the essen-
tial needs of DL Apps, such as easy adaptation, flexible
resources, and GPU acceleration. These are all not supported
by SANCTUARY while achieved by LEAP.

9 CONCLUSION

We present a developer-friendly Normal World TEE, LEAP,
for mobile Apps. We comprehensively analyze the design
requirements of App developers, and LEAP introduces four
techniques to respond to developers’ needs. We implement
the LEAP prototype on Hikey960 and conduct a compre-
hensive evaluation of it. The results show that LEAP en-
ables parallel protection sandbox running with full-fledged
execution flexibility for the intelligent mobile Apps, which
indicates that LEAP balances security and usability well in
mobile scenarios.
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