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Abstract—Collecting histograms over RFID tags is an essential premise for effective aggregate queries and analysis in large-scale

RFID-based applications. In this paper we consider an efficient collection of histograms from the massive number of RFID tags,

without the need to read all tag data. In order to achieve time efficiency, we propose a novel, ensemble sampling-based method to

simultaneously estimate the tag size for a number of categories. We first consider the problem of basic histogram collection, and

propose an efficient algorithm based on the idea of ensemble sampling. We further consider the problems of advanced histogram

collection, respectively, with an iceberg query and a top-k query. Efficient algorithms are proposed to tackle the above problems

such that the qualified/unqualified categories can be quickly identified. This ensemble sampling-based framework is very flexible

and compatible to current tag-counting estimators, which can be efficiently leveraged to estimate the tag size for each category.

Experiment results indicate that our ensemble sampling-based solutions can achieve a much better performance than the basic

estimation/identification schemes.

Index Terms—Algorithms, RFID, time efficiency, histogram

Ç

1 INTRODUCTION

WITH the rapid proliferation of RFID-based applica-
tions, RFID tags have been deployed into pervasive

spaces in increasingly large numbers. In applications like
warehouse monitoring, the items are attached with RFID
tags, and are densely packed into boxes. As the maximum
scanning range of a UHF RFID reader is usually 6-10 m, the
overall number of tags within this three-dimensional space
can be up to tens of thousands in a dense deployment sce-
nario, as envisioned in [1], [2], [3]. Many tag identification
protocols [4], [5], [6], [7], [8] are proposed to uniquely iden-
tify the tags one by one through anti-collision schemes.
However, in a number of applications, only some useful sta-
tistical information is essential to be collected, such as the
overall tag size [2], [9], [10], popular categories [11] and the
histogram. In particular, histograms capture distribution
statistics in a space-efficient fashion. In some applications,
such as a grocery store or a shipping portal, items are cate-
gorized according to some specified metrics, such as types
of merchandize, manufacturers, etc. A histogram is used to
illustrate the number of items in each category.

In practice, tags are typically attached to objects belong-
ing to different categories, e.g., different brands and models
of clothes in a large clothing store, different titles of books

in a book store, etc. Collecting histogram can be used to
illustrate the tag population belonging to each category, and
determine whether the number of tags in a category is
above or below any desired threshold. By setting this
threshold, it is easy to find popular merchandise and control
stock, e.g., automatically signaling when more products
need to be put on the shelf. Furthermore, the histogram can
be used for approximate answering of aggregate queries
[12], [13], as well as preprocessing and mining association
rules in data mining [14]. Therefore, collecting histograms
over RFID tags is an essential premise for effective queries
and analysis in conventional RFID-based applications.
Fig. 1 shows an example for collecting histogram over the
RFID tags deployed in the application scenarios.

While dealing with a large scale deployment with thou-
sands of tags, the traditional tag identification scheme is not
suitable for histogram collection, since the scanning time is
proportional to the number of tags, which can be in the
order of several minutes. As the overall tag size grows,
reading each tag one by one can be rather time-consuming,
which is not scalable at all. As in most applications, the tags
are frequently moving into and out of the effective scanning
area. In order to capture the distribution statistics in time, it
is essential to sacrifice some accuracy so that the main distri-
bution can be obtained within a short time window–in the
order of several seconds. Therefore, we seek to propose an
estimation scheme to quickly count the tag sizes of each cat-
egory while achieving the accuracy requirement.

In most cases, the tag sizes of various categories are sub-
ject to some skewed distribution with a “long tail”, such as
the Gaussian distribution. The long tail represents a large
number of categories, each of which occupies a rather small
percentage among the total categories. While handling the
massive number of tags, in the order of several thousands,
the overall number of categories in the long tail could be in
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hundreds. Therefore, by separately estimating the tag sizes
over each category, a large number of query cycles and slots
are required. Besides, in applications like the iceberg query
and the top-k query, only those major categories are essen-
tial to be addressed. In this situation, the separate estimate
approach will waste a lot of scanning time over those minor
categories in the long tail. Therefore, a novel scheme is
essential to quickly collect the histograms over the massive
RFID tags. In this paper, we propose a series of protocols to
tackle the problem of efficient histogram collection. The
main contributions of this paper are listed as follows (a pre-
liminary version of this work appeared in [15]):

1) To the best of our knowledge, we are the first to con-
sider the problem of collecting histograms and its
applications (i.e., iceberg query and top-k query)
over RFID tags, which is a fundamental premise for
answering aggregate queries and data mining over
RFID-based applications.

2) In order to achieve time efficiency, we propose a
novel, ensemble sampling (ES)-based method to
simultaneously estimate the tag size for a number of
categories. This framework is very flexible and com-
patible to current tag-counting estimators, which can
be efficiently leveraged to estimate the tag size for
each category. While achieving time-efficiency, our
solutions are completely compatible with current
industry standards, i.e., the EPCglobal C1G2 stand-
ards, and do not require any tag modifications.

3) In order to tackle the histogram collection with a
filter condition, we propose an effective solution
for the iceberg query problem. By considering the
population and accuracy constraint, we propose an
efficient algorithm to wipe out the unqualified cat-
egories in time, especially those categories in the
long tail. We further present an effective solution
to tackle the top-k query problem. We use ensemble
sampling to quickly estimate the threshold corre-
sponding to the kth largest category, and reduce it
to the iceberg query problem.

The remainder of the paper is as follows. Sections 2
and 3 present the related work and RFID preliminary,
respectively. We formulate our problem in Section 4, and
present our ensemble sampling-based method for the
basic histogram collection in Section 5. We further present
our solutions for the iceberg query and the top-k query,
respectively, in Sections 6 and 7. In Section 8, we provide
performance analysis in time-efficiency. The performance
evaluation is in Section 9, and we conclude in Section 10.

2 RELATED WORK

In RFID systems, a reader needs to receive data from multi-
ple tags, while the tags are unable to self-regulate their radio
transmissions to avoid collisions; then, a series of slotted
ALOHA-based anti-collision protocols [1], [4], [5], [6], [7],
[8], [16], [17] are designed to efficiently identify tags in RFID
systems. In order to deal with the collision problems in
multi-reader RFID systems, scheduling protocols for reader
activation are explored in the literature [18], [19]. Recently,
a number of polling protocols [20], [21], [22] are proposed,
aiming to collect information from battery-powered active
tags in an energy efficient approach.

Recent research is focused on the collection of statistical
information over the RFID tags [2], [9], [10], [11], [23], [24],
[25], [26], [27]. The authors mainly consider the problem of
estimating the number of tags without collecting the tag IDs.
Murali et al. provide very fast and reliable estimation mech-
anisms for tag quantity in a more practical approach [9]. Li
et al. study the RFID estimation problem from the energy
angle [23]. Their goal is to reduce the amount of energy that
is consumed by the tags during the estimation procedure.
Shahzad et al. propose a new scheme for estimating tag pop-
ulation size called average run based tag estimation (ART)
[2]. Chen et al. aim to gain deeper and fundamental insights
in RFID counting protocols [27], they manage to design
near-optimal protocols that are more efficient than existing
ones and simultaneously simpler than most of them. Liu
et al. investigate efficient distributed query processing in
large RFID-enabled supply chains [28]. Liu et al. propose a
novel solution to fast count the key tags in anonymous RFID
systems [29]. Luo et al. tackle an interesting problem, called
multigroup threshold based classification [25], which is to
determine whether the number of objects in each group is
above or below a prescribed threshold value. Sheng et al.
consider the problem of identifying popular categories of
RFID tags out of a large collection of tags [11], while the set
of category IDs are supposed to be known. Different from
the previous work, in this paper, our goal is to collect the his-
tograms for all categories over RFID tags in a time-efficient
approach, without any priori knowledge of the categories.
Specifically, we respectively consider the basic histogram
collection problem, the iceberg query problem, and the top-k
query problem in regard to collecting histograms in large-
scale RFID systems. We aim to propose a flexible and com-
patible framework for current tag-counting estimators based
on slotted ALOHA protocol, which can be efficiently lever-
aged to estimate the tag size for each category.

3 PRELIMINARY

3.1 The Framed Slotted ALOHA Protocol

In the Class 1 Gen 2 standard, the RFID system leverages the
framed slotted ALOHA protocol to resolve the collisions for tag
identification. When a reader wishes to read a set of tags, it
first powers up and transmits a continuous wave to ener-
gize the tags. It then initiates a series of frames, varying the
number of slots in each frame to best accommodate the
number of tags. Each frame has a number of slots and each
active tag will reply in a randomly selected slot per frame.
After all tags are read, the reader powers down. We refer to
the series of frames between power down periods as a

Fig. 1. An example of collecting histogram over RFID tags
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Query Cycle. Note that, within each frame, tags may choose
the same slot, which causes multiple tags to reply during a
slot. Therefore, within each frame there exist three kinds of
slots: (1) the empty slot where no tag replies; (2) the single
slot where only one tag replies; and (3) the collision slot
where multiple tags reply.

In regard to the tag ID, each tag has a unique 96-bit ID in
its EPC memory, where the first s binary bits can be
regarded as the category ID (1 < s < 96). According to the
C1G2 standard, for each Query Cycle, the reader is able to
select the tags in a specified category by sending a Select
command with an s-bit mask in the category ID field. If mul-
tiple categories need to be selected, the reader can provide
multiple bit masks in the Select command.

3.2 Basic Tag Identification versus
the Estimation Scheme

Assume that there are n tags in total, and that it takes si slots
to uniquely identify n tags. It is known that for each query
round, when the frame size f is equal to the remaining
number of tags, the proportion of singleton slots inside the

frame is maximized; then, the efficiency is ns
f ¼ 1

e. Hence, the

essential number of slots is si ¼
Pþ1

i¼0 ð1� 1
eÞi � n ¼ n � e.

Therefore, assume that it takes se slots to estimate the tag
size for each category with a certain accuracy. If we want
the estimation scheme to achieve a better reading perfor-
mance than the basic tag identification method, then we
need se � le � si � li, where le and li are the sizes of the bit
strings transmitted during the estimation and identification
phases, respectively.

3.3 The Impact of the Inter-Cycle Overhead

The MAC protocol for the C1G2 system is based on slotted
ALOHA. In order to accurately estimate the size of a

specified set of tags, conventionally, the reader should issue
multiple query cycles over the same set of tags and take the
average of the estimates. The inter-cycle overhead consists
of the time between cycles when the reader is powered
down, and the carrier time used to power the tags before
beginning communication. According to the experiment
results in [30], which are conducted in realistic settings,
these times are 40 ms and 3 ms respectively, while the aver-
age time interval per slot is 1 � 2ms.

We have further measured the time interval for various
slots and the inter-cycle duration with the USRP N210 plat-
form. In our experiments, we use the Alien-9900 reader and
Alien-9611 linear antenna with a directional gain of 6 dB.
The RFID tags used are Alien 9640 general-purpose tags
which support the EPC C1G2 standards. We use Alien
reader to continuously read 13 tags for 100 query cycles. We
use USRP N210 as a sniffer to capture the physical signals.
Fig. 2 shows an example of the captured raw signal data of
the interrogation between the reader and the tag. According
to the realistic experiment results in this setting, the average
intervals for various slots are summarized in Table 1. It is
found that, in most cases, the slot is started with a QueryRep
command, then the average interval for empty slots is
0.9 ms per slot, the average interval for singleton slots is 4.1
ms per slot, and the average interval for collision slots is 1.3
ms per slot; when a slot happens to be the first slot of a
frame, the slot is started with a Query command, then the
average interval for empty slots is 1.7 ms per slot, the aver-
age interval for singleton is 5.1 ms per slot, and the average
interval for collision slots is 2.2 ms per slot. By measuring
the time intervals between two adjacent query cycles, it is
found that the average interval for inter-cycle duration is
28.3 ms. Note that if the powered-down interval is not long
enough, it is possible that some surrounding tags will main-
tain the former state for the inventoried flag with their local
residual power, which causes them to keep silent in the
upcoming query cycle.

Therefore, since the average inter-cycle duration (28.3 ms)
is much larger than the average time interval of conventional
slots (empty slot: 0.9 ms, singleton slot: 4.1 ms, collision slot:
1.3 ms), the inter-cycle duration must be taken into account
when considering overall reading performance. It is obvious
that reading a large number of tags per cycle amortizes the
cost of inter-cycle overhead, resulting in lower per tag read-
ing time, while for small tag sets the inter-cycle overhead is
significant. It is essential to sufficiently reduce the inter-cycle
overhead when we design a solution and set the correspond-
ing parameters for RFID systems.

4 PROBLEM FORMULATION

Suppose there are a large number of tags in the effective
scanning area of the RFID reader, the RFID system conforms

Fig. 2. The captured raw signal data of the interrogation between the
reader and the tag

TABLE 1
The Average Time Interval for Various Slots

after QueryRep command after Query command

empty slot 0.9 ms 1.7 ms
singleton slot 4.1 ms 5.1 ms
collision slot 1.3 ms 2.2 ms
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to EPCglobal C1G2 standards, i.e., the slotted ALOHA-
based anti-collision scheme [4], [6] is used in the system
model. The objective is to collect the histogram over RFID
tags according to some categorized metric, e.g, the type of
merchandise, while the present set of category IDs cannot
be predicted in advance. As we aim at a dynamic environ-
ment where the tags may frequently enter and leave the
scanning area, a time-efficient strategy must be proposed.
Therefore, the specified accuracy can be relaxed in order to
quickly collect the histogram. Assume that the overall tag
size is n, there exist m categories C ¼ fC1; C2; . . . ; Cmg, and
the actual tag size for each category is n1; n2; . . . ; nm.

In the Basic Histogram Collection, the RFID system needs
to collect the histogram for all categories. Due to the inherent
inaccurate property for RFID systems, users can specify the
accuracy requirement for the histogram collection. Suppose
the estimated tag size for category Cið1 � i � mÞ is bni, then
the following accuracy constraint should be satisfied:

Pr½j bni � nij � � � ni� 	 1� b accuracy constraint: (1)

The accuracy constraint illustrates that, given the exact tag
size ni for a specified category, the estimated tag size bni

should be in an confidence interval of width 2� � ni, i.e.,bni
ni
2 ½1� �; 1þ �� with probability greater than 1� b. For

example, if � ¼ 0:1; b ¼ 0:05, then in regard to a category
with tag size ni ¼ 100, the estimated tag size bni should be
within the range ½90;110� with probability greater than
95 percent.

In the Iceberg Query Problem, only those categories with a
tag size over a specified threshold t are essential to be illus-
trated in the histogram, while the accuracy requirement is
satisfied. As the exact tag size ni for category Ci is unknown,
then, given the estimated value of tag size bni, it is possible to
have false negative error and false positive error in verifying
the population constraint. Therefore, it is essential to guar-
antee that the false negative/positive rate is below b, that is:

Pr½ bni < tjni 	 t� < b; (2)

Pr½ bni 	 tjni < t� < b: (3)

In the Top-k Query Problem, we use the definition of the
probabilistic threshold top-k query (PT-Topk query), i.e., in
regard to the tag size, only the set of categories where each
takes a probability of at least 1� b to be in the top-k list are
illustrated in the histogram, while the accuracy requirement
is satisfied. Much like the iceberg query problem, as the
exact tag size ni for category Ci is unknown, then, given the
estimated value of tag size bni, it is possible to have false neg-
ative error and false positive error in verifying the popula-
tion constraint, the following constraint must be satisfied:

Pr½Ci is regarded out of top-k list jCi 2 top-k list� < b; (4)

Pr½Ci is regarded in top-k list jCi =2 top-k list� < b: (5)

In this paper, we aim to propose a series of novel solu-
tions to tackle the above problems while satisfying the
following properties: (1) Time-efficient. (2) Simple for the
tag side in the protocol. (3) Complies with the EPCglobal
C1G2 standards. Therefore, in order for the proposed

algorithm to work, we only require the tags to comply
with the current C1G2 standards: each tag has a unique
96-bit ID in its EPC memory, where the first s binary bits
are regarded as the category ID (1 < s < 96). According to
the C1G2 standard, the reader is able to select the tags in
a specified category by sending a Select command with an
s-bit mask in the category ID field. If multiple categories
need to be selected, the reader can provide multiple bit
masks in the Select command.

5 USE ENSEMBLE SAMPLING TO

COLLECT HISTOGRAMS

When collecting the histograms over a large number of cate-
gories, the objective is to minimize the overall scanning
time while the corresponding accuracy/population con-
straints are satisfied. Two straightforward solutions are
summarized as follows: (1) Basic Tag Identification: The histo-
gram is collected by uniquely identifying each tag from the
massive tag set and putting it into the corresponding cate-
gories, thus the accuracy is 100 percent, and (2) Separate
Counting: As the category IDs cannot be predicted in
advance, the tree traversal method [31] is used to obtain the
category IDs. Then, the reader sends a Select command to
the tags, and it activates the tags in the specified category by
providing a bit mask over the category ID in the command.
According to the replies from the specified tags, the estima-
tors such as [9], [24], [32] can be used to estimate the tag size
for each category. As the rough tag size for each category
cannot be predicted in advance, a fixed initial frame size is
used for each category.

Both the above two solutions are not time-efficient. In
regard to the basic tag identification, uniquely identifying
each tag in the massive set is not scalable, for as the tag size
grows into a huge number, the scanning time can be an
unacceptable value. In regard to the separated counting, the
reader needs to scan each category with at least one query
cycle, even if the category is a minor category, which is not
necessarily addressed in the iceberg query and the top-k
query. As the number of categories m can be fairly large,
e.g., in the order of hundreds, the Select command and the
fixed initial frame size for each category, as well as the
inter-cycle overhead among a large number of query cycles,
make the overall scanning time rather large.

Therefore, we consider an ensemble sampling-based esti-
mation scheme as follows: select a certain number of catego-
ries and issue a query cycle, obtain the empty/singleton/
collision slots, and then estimate the tag size for each of the
categories according to the sampling in the singleton slots.
In this way, the ensemble sampling is more preferred than
the separate counting in terms of reading performance.
Since more tags are involved in one query cycle, more slots
amortize the cost of inter-cycle overhead, the Select com-
mand, as well as the fixed initial frame size. Thus, the over-
all scanning time can be greatly reduced.

5.1 The Estimator ES

In the slotted ALOHA-based protocol, besides the empty slots
and the collision slots, the singleton slots can be obtained. In
the ensemble sampling-based estimation, according to the
observed statistics of the empty/singleton/collision slots, we
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can use estimators in [9], [24], [32] etc. to estimate the overall
tag size. Then, according to the response in each singleton slot,
the category ID is obtained from the first s bits in the tag ID.
Based on the sampling from the singleton slots, the tag size for
each category can be estimated. The reason is as follows:

Assume that there exists m categories C1; C2; . . . ; Cm, the
overall tag size is n, and the tag size for each category is
n1; n2; . . . ; nm. We define an indicator variable Xi;j to denote
whether one tag of category Ci selects a slot j inside the
frame with the size f . We set Xi;j ¼ 1 if only one tag of cate-
gory Ci selects the slot j, and Xi;j ¼ 0 otherwise. Moreover,
we use Pr½Xi;j ¼ 1� to denote the probability that only one
tag of category Ci selects the slot j, then,

Pr½Xi;j ¼ 1� ¼ 1

f
� 1� 1

f

� �n�1

� ni:

If we use ns;i to denote the number of singleton slots

selected by tags of category Ci, thus ns;i ¼
Pf

j¼1 Xi;j, then,

the expected value

Eðns;iÞ ¼
Xf
j¼1

Pr½Xi;j ¼ 1� ¼ 1� 1

f

� �n�1

� ni:

Furthermore, let ns denote the number of singleton slots, the

expected value EðnsÞ ¼ ð1� 1
fÞn�1 � n. Then, Eðns;iÞ

EðnsÞ ¼ ni
n . Thus

we can approximate the tag size of category Ci as follows:

bni ¼ ns;i

ns
� bn: (6)

Here, bn is the estimated value of the overall tag size. Letbai ¼ ns;i
ns
, then bni ¼ bai � bn.

5.2 Accuracy Analysis

5.2.1 Accuracy of the ES Estimator

In the ensemble sampling-based estimation, since the esti-
mators such as [9], [24], [32] can be utilized for estimating
the overall number of tags, we use d to denote the variance
of bn. We have the property in Lemma 1.

Lemma 1. The number of singleton slots ns and the number of
singleton slots ns;i selected by the tags of category Ci, respec-
tively, have the following expectations:

Eðn2
sÞ ¼ 1� 1

f

� �n�1
� nþ f�1

f � 1� 2
f

� �n�2
� ðn2 � nÞ;

Eðn2
s;iÞ ¼ 1� 1

f

� �n�1
� ni þ f�1

f � 1� 2
f

� �n�2
� ðn2

i � niÞ:

8><
>:

Proof. See Appendix A,which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2014.2357021. tu
We rely on the following theorem to illustrate the accu-

racy of the estimator SE.

Theorem 1. Let di represent the variance of the estimator SE bni,
the load factor r ¼ n

f, then,

di ¼ ni

n
� e

r þ ni � 1

er þ n� 1
� ðdþ n2Þ � n2

i : (7)

Proof. See Appendix B, available in the online supple-
mental material. tu

5.2.2 Reducing the Variance through Repeated Tests

As the frame size for each query cycle has a maximum
value, by estimating from the ensemble sampling within
only one query cycle, the estimated tag size may not be
accurate enough for the accuracy constraint. In this situa-
tion, multiple query cycles are essential to reduce the vari-
ance through repeated tests. Suppose the reader issues l
query cycles over the same set of categories, in regard to a
specified category Ci, by utilizing the weighted statistical

averaging method, the averaged tag size bni ¼
Pl

k¼1 vk � cni;k;

here vk ¼
1
di;kPl

k¼1
1
di;k

, cni;k and di;k respectively denote the esti-

mated tag size and variance for each cycle k. Then, the vari-

ance of bni is s
2
i ¼ 1Pl

k¼1
1
di;k

.

Therefore, according to the accuracy constraint in the
problem formulation, we rely on the following theorem to
express this constraint in the form of the variance.

Theorem 2. Suppose the variance of the averaged tag size bni is

s2
i . The accuracy constraint is satisfied for a specified cate-

gory Ci, as long as s2
i � ð �

Z1�b=2
Þ2 � n2

i , Z1�b=2 is the 1� b
2 per-

centile for the standard normal distribution.

Proof. See Appendix C, available in the online supplemental
material. tu
According to Theorem 2, we can verify if the accuracy

constraint is satisfied for each category through directly
checking the variance against the threshold ð �

Z1�b=2
Þ2 � n2

i . If
1� b ¼ 95%, then Z1�b=2 ¼ 1:96.

5.2.3 Property of the Ensemble Sampling

According to Theorem 1, the normalized variance of the SE
estimator �i ¼ di

ni
is equivalent to �i ¼ d�n�er þn

er þn� 1 � nin þ
ðdþn2Þðer � 1Þ
n�ðer þn� 1Þ . Let a ¼ d�n�er þn

er þn� 1 , b ¼ ðdþn2Þðer � 1Þ
n�ðer þn� 1Þ . Then, the nor-

malized variance �i ¼ a � nin þ b. Since the SE estimator can

utilize any estimator like [9], [24], [32] to estimate the overall
tag size, then, without loss of generality, if we use the esti-
mator in [9], we can prove that a < 0 for any value of
n > 0; f > 0. The following theorem shows this property in
the normalized variance.

Theorem 3. d�n�er þn
er þn� 1 < 0 for any value of n > 0; f > 0.

Proof. See Appendix D, available in the online supplemen-
tal material. tu
This property applies to any estimator with variance

smaller than d0 in ZE, which simply estimates the overall
tag size based on the observed number of empty slots.

According to Theorem 3, in order to satisfy the accuracy

constraint, we should ensure �i � ð �
Z1�b=2

Þ2 � ni. As a < 0 for all

values of f , it infers that the larger the value ni is, the faster it
will be for the specified category to satisfy the accuracy con-
straint. On the contrary, the smaller the value ni is, the slower
it will be for the specified category to satisfy the accuracy
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constraint. This occurs during the ensemble sampling, when
themajor categories occupymost of the singleton slots, while
those minor categories cannot obtain enough samplings in
the singleton slots for an accurate estimation of the tag size.

5.3 Compute the Optimal Granularity
for Ensemble Sampling

As indicated in the above analysis, during a query cycle of
the ensemble sampling, in order to achieve the accuracy
requirement for all categories, the essential scanning time
mainly depends on the category with the smallest tag size,
as the other categories must still be involved in the query
cycle until this category achieves the accuracy requirement.
Therefore, we use the notion group to define a set of catego-
ries involved in a query cycle of the ensemble sampling.
Hence, each cycle of ensemble sampling should be applied
over an appropriate group, such that the variance of the tag
sizes for the involved categories cannot be too large. In this
way, all categories in the same group achieve the accuracy
requirement with very close finishing time. In addition,
according to Eq. (7), as the number of categories increases in
the ensemble sampling, the load factor r is increased, then
the achieved accuracy for each involved category is
reduced. Therefore, it is essential to compute an optimal
granularity for the group in regard to the reading perfor-
mance. Suppose there exists m categories in total, the objec-
tive is to divide them into dð1 � d � mÞ groups for
ensemble sampling, such that the overall scanning time can
be minimized while achieving the accuracy requirement.

For a specified group, in order for all involved categories
to satisfy the accuracy requirement, it is essential to com-
pute the required frame size for the category with the small-
est tag size, say ni. Let ti ¼ ð �

Z1�b=2
Þ2 � ni, then according to

Theorem 2, we can compute the essential frame size f such
that �iðfÞ � ti. Assume that the inter-cycle overhead is tc,
the average time interval per slot is ts. Therefore, if
f � fmax, then the total scanning time T ¼ f � ts þ tc. Other-
wise, if the final estimate is the average of r independent
experiments each with an estimator variance of �iðfmaxÞ,
then the variance of the average is �iðfmaxÞ

r . Hence, if we want

the final variance to be ti, then r should be �iðfmaxÞ
ti

, the total

scanning time is T ¼ ðfmax � ts þ tcÞ � r.
We propose a dynamic programming-based algorithm to

compute the optimal granularity for ensemble sampling.
Assume that currently there are m categories ranked in
non-increasing order according to the estimated tag size,
e.g., C1; C2; . . . ; Cm. We need to cut the ranked categories
into one or more continuous groups for ensemble sampling.
In regard to a single group consisting of categories from Ci

to Cj, we define tði; jÞ as the essential scanning time for
ensemble sampling, which is computed in the same way as
the aforementioned T . Furthermore, we define T ði; jÞ as the
minimum overall scanning time over the categories from Ci

to Cj among various grouping strategies. Then, the recur-
sive expression of T ði; jÞ is shown in Eq. (8):

T ði; jÞ ¼ mini�k�jftði; kÞ þ T ðkþ 1; jÞg; i < j,
tði; iÞ; i ¼ j.

�
(8)

In Eq. (8), the value of T ði; jÞ is obtained by enumerating each
possible combination of tði; kÞ and T ðkþ 1; jÞ, and then

getting the minimum value of tði; kÞ þ T ðkþ 1; jÞ. By solving
the overlapping subproblems in T ði; jÞ, the optimization
problem is then reduced to computing the value of T ð1;mÞ.

For example, suppose there are a set of tags with 10 cate-
gories, these categories are ranked in non-increasing order of
the estimated tag size, say, f100, 80, 75, 41, 35, 30, 20, 15, 12,
8g, then they are finally divided into three groups for ensem-
ble sampling according to the dynamic programming, i.e.,
f100;80;75g; f41;35;30g, and f20;15;12;8g. In this way, the tag
sizes of each category inside one group are close to each
other, during the ensemble sampling all categories in the
same group can achieve the accuracy requirement with very
close finishing time, very few slots are wasted due to waiting
for those, comparatively speaking, minor categories. On the
other hand, these categories are put together with an appro-
priate granularity for ensemble sampling to sufficiently
amortize the fixed time cost for each query cycle.

5.4 The Ensemble Sampling-Based Algorithm

In Algorithm 1, we propose an ensemble sampling-based
algorithm for the basic histogram collection. In the beginning,
as the overall number of tags n cannot be predicted, in order
to accomodate a large operating range up to n, we need to

set the initial frame size f by solving fe�n=f ¼ 5 as sug-
gested in [9]. Then, during each cycle of ensemble sampling,
we find the category with the largest population y in the sin-
gleton slots, and set a threshold ns;i > y � uð0 < u < 1Þ to fil-
ter out those minor categories which occasionally occupy a
small number of singleton slots. For example, suppose it is
observed from the singleton slots that the number of slots
occupied by various categories are as follows: f35; 25;
10; 5; 3; 1g, if u is set to 0.1, then the categories with the
number of slots equal to 3 and 1 are filtered out from the
next ensemble sampling. Therefore, during the ensemble
sampling, we can avoid estimating tag sizes for those minor
categories with a rather large variance. Then, the involved
categories are further divided into smaller groups based on
the dynamic programming. Therefore, as those major cate-
gories are estimated and wiped out from the set R phase by
phase, all categories including the relatively minor catego-
ries can be accurately estimated in terms of tag size. The
query cycles continue to be issued until no singleton slots or
collision slots exist.

6 ENSEMBLE SAMPLING FOR THE ICEBERG QUERY

6.1 Motivation

In some applications, the users only pay attention to the
major categories with the tag sizes above a certain threshold
t, while thoseminor categories are not necessarily addressed.
Then, the iceberg query [33] is utilized to filter out those cate-
gories below the threshold t in terms of the tag size. In this
situation, the separate counting scheme is especially not suit-
able, since most of the categories are not within the scope of
the concern, which can bewiped out together immediately.

According to the definition in the problem formulation,
three constraints for the iceberg querymust be satisfied:

Pr½j bni � nij � � � ni� 	 1� b accuracy constraint;

Pr½ bni < tjni 	 t� < b population constraint;

Pr½ bni 	 tjni < t� < b population constraint:
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Algorithm 1. Algorithm for Histogram Collection

1: INPUT: 1. Upper bound n on the number of tags n
2: 2. Confidence interval width �
3: 3. Error probability b

4: Initialize the set R to all tags. Set l ¼ 1.
5: while ns 6¼ 0 ^ nc 6¼ 0 do
6: If l ¼ 1, compute the initial frame size f by solving

fe�n=f ¼ 5. Otherwise, compute the frame size f ¼ bn.
If f > fmax, set f ¼ fmax.

7: Set S to ? . Select the tags in R and issue a query cycle
with the frame size f , get n0; nc; ns. Find the category
with the largest population y in the singleton slots. For
each category which appears in the singleton slot with
population ns;i > y � uðu is constant, 0 < u < 1Þ, add it
to the set S. Estimate the tag size ni for each category
Ci 2 S using the SE estimator. Compute the variances
d0i for each category Ci 2 S according to Eq. (7).

8: Rank the categories in S in non-increasing order of the
tag size. Divide the set S into groups S1; S2; . . . ; Sd

according to the dynamic programming-basedmethod.
9: for each Sj 2 Sð1 � j � dÞ do
10: For each category Ci 2 Sj, compute the frame size fi

from di by solving 1
1=d0

i
þ1=di

� ð �
Z1�b=2

Þ2 � bni
2.

11: Obtain the maximum frame size f ¼ maxCi2Sjfi. If
f < fmax, select all categories in Sj, and issue a query
cycle with frame size f . Otherwise, select all catego-
ries in Sj, and issue r query cycles with the frame
size fmax. Wipe out the categories with satisfied
accuracy after each query cycle.

12: Estimate the tag size bni for each category Ci 2 Sj,
illustrate them in the histogram.

13: end for
14: bn ¼ bn�P

Ci2S bni. R ¼ R� S. S ¼ ? . l ¼ lþ 1.
15: end while

The first constraint is the accuracy constraint, while the
second and third constraints are the population constraints.
In regard to the accuracy constraint, we have demonstrated
in Theorem 2 that it can be expressed in the form of the vari-
ance constraint. In regard to the population constraint, the
second constraint infers that, in the results of the iceberg
query, the false negative probability should be no more
than b, while the third constraint infers that the false posi-
tive probability should be no more than b. We rely on the
following theorem to express the population constraint in
another equivalent form.

Theorem 4. The two population constraints, Pr½ bni < tjni 	 t� <
b and Pr½ bni 	 tjni < t� < b, are satisfied as long as the stan-

dard deviation of the averaged tag size si � jni�tj
F�1ð1�bÞ, FðxÞ is

the cumulative distribution function of the standard normal
distribution.

Proof. See Appendix E, available in the online supplemental
material. tu
In order to better illustrate the inherent principle, Fig. 3

shows an example of the histogram with the 1� b confi-
dence interval annotated, the y-axis denotes the estimated
tag size for each category. In order to accurately verify the
population constraint, it is required that the variance of the
estimated tag size should be small enough. Note that when

the 1� b confidence interval of the tag size bni is above/
below the threshold t, the specified category can be respec-
tively identified as qualified/unqualified, as both the false
positive and false negative probabilities are less than b; oth-
erwise, the specified category is still undetermined. Accord-
ing to the weighted statistical averaging method, as the
number of repeated tests increases, the averaged variance si

for each category decreases, thus the confidence interval for
each category is shrinking. Therefore, after a certain number
of query cycles, all categories can be determined as quali-
fied/unqualified for the population constraint.

Note that when the estimated value bni 
 t or bni � t, the
required variance in the population constraint is much larger
than the specifications of the accuracy constraint. In this situ-
ation, these categories can be quickly identified as qualified/
unqualified, and can be wiped out immediately from the
ensemble sampling for verifying the population constraint.
Thus, those undetermined categories can be further involved
in the ensemble sampling with a much smaller tag size, veri-
fying the population constraint in a faster approach.

Sometimes the tag sizes of various categories are subject
to some skew distributions with a “long tail”. The long tail
represents those categories each of which occupies a rather
small percentage among the total categories, but all together
they occupy a substantial proportion of the overall tag sizes.
In regard to the iceberg query, conventionally the categories
in the long tail are unqualified for the population constraint.
However, due to the small tag size, most of them may not
have the opportunity to occupy even one singleton slot
when contending with those major categories during the
ensemble sampling. They remain undetermined without
being immediately wiped out, leading to inefficiency in
scanning the other categories. We rely on the following the-
orem to quickly wipe out the categories in the long tail.

Theorem 5. For any two categories Ci and Cj that ns;i < ns;j sat-
isfies for each query cycle of ensemble sampling, if Cj is deter-
mined to be unqualified for the population constraint, then Ci

is also unqualified.

Proof. See Appendix F, available in the online supplemental
material. tu
According to Theorem 5, after a number of query cycles of

ensemble sampling, if a categoryCj is determinedunqualified
for the population constraint, then for any category Ci which
has not appeared once in the singleton slots, ns;j > ns;i ¼ 0, it
can bewiped out immediately as an unqualified category.

Fig. 3. Histogram with confidence interval annotated.
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6.2 Algorithm for the Iceberg Query Problem

We propose the algorithm for the iceberg query problem in
Algorithm 2. Assume that the current set of categories is R,
during the query cycles of ensemble sampling, the reader con-
tinuously updates the statistical value of bni as well as the stan-
dard deviation si for each category Ci 2 R. After each query
cycle, the categories in R can be further divided into the fol-
lowing categories according to the population constraint:

� Qualified categories Q: If bni 	 t and si � bni�t

F�1ð1�bÞ,

then category Ci is identified as qualified for the
population constraint.

� Unqualified categories U : If bni < t and si � t�bni
F�1ð1�bÞ,

then category Ci is identified as unqualified for the
population constraint.

� Undetermined categories R: The remaining catego-
ries to be verified are undetermined categories.

Algorithm 2. Algorithm for Iceberg Query

1: INPUT: 1. Upper bound n on the number of tags n
2: 2. Confidence interval width �
3: 3. Threshold t
4: 4. Error probability b

5: Initialize R to all categories, set Q;U; V to ? . Set l ¼ 1.
6: while R 6¼ ? do
7: If l ¼ 1, compute the initial frame size f by solving

fe�n=f ¼ 5. Otherwise, compute the frame size f ¼ bn. If
f > fmax, set f ¼ fmax.

8: Set S to ? . Select the tags in R and issue a query cycle
with frame size f , get n0; nc; ns. Find the category with
the largest population y in the singleton slots. For each
category which appears in the singleton slot with popu-
lation ns;i > y � uðu is constant, 0 < u < 1Þ, add it to the
set S. If y � u < 1, then add all remaining categories into
S. Set S0 ¼ S. l ¼ 1.

9: while S 6¼ ? do
10: Compute the frame size fi for each category Ci 2 S

such that the variance si ¼ jt�bnij
F�1ð1�bÞ. If fi > bni � e, then

remove Ci from S to V . If fi > fmax, set fi ¼ fmax.
Obtain the frame size f as the mid-value among the
series of fi.

11: Select all tags in S, issue a query cycle with the frame
size f , compute the estimated tag size bni and the aver-
aged standard deviation si for each category Ci 2 S.
Detect the qualified category setQ and unqualified cat-
egory set U . Set S ¼ S �Q� U .

12: if U 6¼ ? then
13: Wipe out all categories unexplored in the singleton

slots from S.
14: end if
15: end while
16: bn ¼ bn�P

Ci2S0 bni. R ¼ R� S0, l ¼ lþ 1.
17: end while
18: Further verify the categories in V and Q for the accuracy

constraint.

Therefore, after each query cycle of ensemble sampling,
those unqualified categories and qualified categories can be
immediately wiped out from the ensemble sampling. When
at least one category is determined as unqualified, all of the
categories in the current group which have not been

explored in the singleton slots are wiped out immediately.
The query cycles are then continuously issued over those
undetermined categories in R until R ¼ ? .

For example, suppose the threshold is set to 30, after a
query cycle of ensemble sampling, the estimated number of
tags for each category is as follows: {120, 80, 65, 35, 28, 10,
8}, according to the standard deviation of estimation for var-
ious categories, then the categories with estimated tag size
of 120, 80 and 65 can be immediately determined as quali-
fied, the categories with estimated tag size of 10 and 8 can
be also immediately determined as unqualified, for those
categories with estimated tag size 35 and 28, due to the cur-
rent estimation error, we cannot yet determine if they are
exactly qualified or unqualified, thus another cycle of
ensemble sampling is required for further verification.

During the ensemble sampling, if there exist some catego-
ries with tag sizes very close to the threshold t, then the
required number of slots to verify the population constraint
can be rather large. Thus, we compute the essential frame
size fi for each category Ci and compare it with the expected
number of slots bni � e in basic tag identification. If fi > bni � e,
then the category is removed from the set S to V .We heuristi-
cally set the frame size f to themid-value among the series of
fi, such that after a query cycle, about half of the categories
can be determined as qualified/unqualified, and thus wiped
out quickly. Therefore, after the while loop, for each category
Ci 2 V , basic identification is used to obtain the exact tag size
ni. If ni 	 t, Ci is illustrated in the histogram. For each cate-
goryCi 2 Q, the reader verifies if it has satisfied the accuracy
requirement; if so, Ci is illustrated in the histogram and
wiped out from Q. Then, ensemble sampling is further
applied over the categories in Q to satisfy the accuracy
requirement by using the optimized groupingmethod.

7 ENSEMBLE SAMPLING FOR THE TOP-kk QUERY

7.1 Motivation

In some applications, when the number of categories is
fairly large, the users only focus on the major categories
in the top-k list in regard to the tag size. Then the top-k
query is utilized to filter out those categories out of the
top-k list. In this situation, the separate counting scheme
is especially not suitable. If the specified category is not
in the top-k list, it is unnecessary to address it for accu-
rate tag size estimation. However, since the threshold t
for the top-k list cannot be known in advance, the sepa-
rate counting scheme cannot quickly decide which catego-
ries can be wiped out immediately.

Moreover, when the distribution around the kth ranking
is fairly even, i.e., the size of each category is very close, it is
rather difficult to determine which categories belong to the
top-k categories. Based on this understanding, we utilize
the probabilistic threshold top-k query (PT-Topk query) to
return a set of categories Q where each takes a probability
of at least 1� bð0 < b � 1Þ to be in the top-k list. Therefore,
the size of Q is not necessarily going to be exactly k.

Hence, as the exact value of tag size ni is unknown, in
order to define Pr½Ci 2 top-k list�, i.e., the probability that
category Ci is within the top-k list in terms of tag size, it is
essential to determine a threshold t so that Pr½Ci 2
top-k list� ¼ Pr½ni 	 t�. Ideally, t should be the tag size of
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the kth largest category; however, it is rather difficult to
compute an exact value of t in the estimation scheme due to
the randomness in the slotted ALOHA protocol. Therefore,
according to the problem formulation in Section 4, we

attempt to obtain an estimated value bt such that the follow-
ing constraints are satisfied:

Pr½j bni � nij � � � ni� 	 1� b accuracy constraint;

Pr½jbt� tj � � � t� 	 1� b accuracy constraint of bt;
Pr½ bni < btjni 	 bt� < b population constraint;

(9)

Pr½ bni 	 btjni < bt� < b population constraint: (10)

Therefore, if the threshold bt can be accurately estimated,
then the top-k query problem is reduced to the iceberg
query problem. The population constraints (9) and (10) are
respectively equivalent to the population constraints (4) and
(5). Then it is essential to quickly determine the value of the

threshold btwhile satisfying the constraint Pr½jbt� tj � � � t� 	
1� b. We rely on the following theorem to express the
above constraint in the form of the variance.

Theorem 6. The constraint Pr½jbt� tj � � � t� 	 1� b is satisfied

as long as Varðbt� tÞ � �2 � t2 � b.
Proof. See Appendix G, available in the online supplemen-

tal material. tu

7.2 Algorithm

According to Theorem 6, we utilize the ensemble sampling
to quickly estimate the threshold bt. The intuition is as fol-
lows: after the first query cycle of ensemble sampling, we
can estimate a confidence interval ½tlow; tup� of the threshold t

according to the sampled distribution. Then, by wiping out
those categories which are obviously qualified or unquali-
fied to be in the top-k list, the width of the confidence inter-
val can be quickly reduced. As the approximated thresholdbt is selected within the confidence interval, after a number
of query cycles of ensemble sampling, when the width is

below a certain threshold, the estimated value bt can be close
enough to the exact threshold t.

Based on the above analysis, we propose an algorithm for
the top-k query problem in Algorithm 3. In the beginning, a
while loop is utilized to quickly identify an approximate

value bt for the threshold t. Suppose that the averaged esti-
mated tag size and standard deviation for each category Ci

are respectively bni and si, if we use p to denote a small con-

stant value between 0 and 1, let h ¼ F�1ð1� p
2Þ. Then, given

a fixed value of p, the 1� p confidence interval for ni is
½ bni � h � si; bni þ h � si�. For each iteration, we respectively
determine an upper bound tup and a lower bound tlow for
the threshold t, according to the kth largest category in the
current ranking. Then, we respectively wipe out those quali-
fied and unqualified categories according to the upper
bound tup and a lower bound tlow. The value of k is then
decreased by the number of qualified categories. In this
way, the threshold t is guaranteed to be within the range
½tlow; tup� with a probability of at least 1� p. When p ! 0,
then t 2 ½tlow; tup� with the probability close to 100 percent.

Moreover, an estimated threshold bt is also selected within
this range. Therefore, let the width g ¼ tup � tlow, then the

variance of bt� t is at most g2. In order to guarantee that

Varðbt� tÞ � �2 � t2 � b, it is essential to ensure g2 � �2 � t2 � b.
As the ensemble sampling is continuously issued over the
categories in R, the standard deviation si for each category
Ci 2 R is continuously decreasing. Furthermore, as the
qualified/unqualified categories are continuously wiped
out, the upper bound tup is continuously decreasing while
the lower bound tlow is continuously increasing. The width
of the range ½tlow; tup� is continuously decreasing. The while

loop continues until g2 � �2 � t2 � b. Then, after the estimated

threshold bt is computed, the iceberg query is further applied

over those categories with the threshold bt.
Algorithm 3. Algorithm for PT-Topk Query Problem

1: INPUT: 1. Upper bound n on the number of tags n
2: 2. Confidence interval width �
3: 3. The value of k
4: 4. Error probability b
5: Initialize R to all categories, set l ¼ 1, h ¼ F�1ð1� p

2Þ.
6: while true do
7: Issue a query cycle to apply ensemble sampling over all

categories in R. Compute the statistical average value
and standard deviations as bni and si.

8: Rank the categories in R according to the value ofbni þ h � si for each identified category Ci. Find the k-th
largest category Ci, set tup ¼ bni þ h � si. Detect the quali-
fied categories Qwith threshold tup.

9: Rank the categories in R according to the value ofbni � h � si for each identified category Ci. Find the k-th
largest category Ci, set tlow ¼ bni � h � si. Detect the
unqualified categories U with threshold tlow.

10: Wipe out the qualified/unqualified categories from R.
R ¼ R�Q� U . Suppose the number of qualified cate-
gories in current cycle is q, set k ¼ k� q.

11: Rank the categories in R according to the value of bni for
each identified category Ci. Find the k-th largest category

Ci, set bt ¼ bni. Set g ¼ tup � tlow. l ¼ lþ 1.
12: if g2 � �2 � b �bt2 then
13: Break the while loop.
14: end if
15: end while
16: Apply iceberg query with threshold bt over the undetermined

categories R and the qualified categories Q.

For example, suppose the value of k is 5, after a query
cycle of ensemble sampling, the estimated number of tags
for various categories is ranked in decreasing order as fol-
lows: {C1:120, C2:85, C3:67, C4:50, C5:48, C6:45, C7:20, C8:15 },
the threshold tup and tlow are respectively set to 68 and 28
according to the fifth largest category, then the categories
with tag size 120 and 85 can be determined as qualified cate-
gories since their tag sizes are above the threshold tup, the cat-
egories with tag size 20 and 15 can be also determined as
unqualified categories since their tag sizes are below the
threshold tlow. Therefore, the remaining categories are as fol-
lows: C3; C4; C5 and C6, we hence need another cycle of
ensemble sampling to further verify the threshold according
to the third largest category.

8 DISCUSSION ON PRACTICAL ISSUES

8.1 Time-Efficiency

As mentioned in the problem formulation, the most critical
factor for the histogram collection problem is the time
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efficiency. In regard to the basic histogram collection, the
time delay is mainly impacted by two factors: 1) the number
of categories m, 2) the category with the smallest tag size,
say ni, inside the group for ensemble sampling. Generally,
as the number of categories m increases, the number of
groups and the essential number of slots for each ensemble
sampling is increasing, causing the time delay to increase.
Besides, the category with the smallest tag size ni directly
decides the essential frame size inside the group, the larger
the gap among the tag sizes of each category in the same
group, the lower the time efficiency that is achieved.

In regard to the iceberg query and the top-k query, the
time delay mainly depends on the number of categories
with the tag size close to the threshold t. Due to the variance
in tag size estimation, a relatively large number of slots are
required to verify whether the specified categories have tag
sizes over the threshold t. For the top-k query, additional
time delay is required to estimate the threshold t corre-
sponding to the top-k query.

8.2 Interference Factors in Realistic Settings

In realistic settings of various applications, there might exist
several interference factors which hinder the actual perfor-
mance of histogram collection. These practical issues mainly
include path loss, multi-path effect, and mutual interfer-
ence. In the following we elaborate on the detail techniques
to effectively tackle these problems.

Path loss. Path loss is common in RFID-based applica-
tions, which may lead to the probabilistic backscattering [7]
in RFID systems, even if the tags are placed in the reader’s
effective scanning range. In such scenario, the tags may
reply in each query cycle with a certain probability instead
of 100 percent. Therefore, in regard to the tag-counting pro-
tocols in our solutions, we need to essentially estimate the
probability via statistical tests in the particular application
scenarios. In this way, we can accurately estimate the num-
ber of tags according to the probability obtained in advance.

Multi-path effect. Multi-path effect is especially common
for indoor applications. Due to multi-path effect, some tags
cannot be effectively activated as the forwarding waves
may offset each other, even in the effective scanning range
of RFID systems. To mitigate the multi-path effect, we can
use the mobile reader to continuously interrogate the sur-
rounding tags such that the multi-path profile can be contin-
uously changing. In this way, the tags are expected to have
more chances to be activated for at least once during the
continuous scanning [8].

Mutual interference: If the tags are placed too close, they
may have a critical state of mutual interference [34] such
that neither of the tags can be effectively activated. This is
mainly caused by the coupling effect when the reader’s
power is adjusted to a certain value. Hence, in order to miti-
gate the mutual interference among RFID tags, we should
skillfully tune the transmission power of the reader so as to
avoid the critical state among tags. A suitable power step-
ping method should be leveraged to sufficiently reduce the
mutual interference among all tags.

8.3 Overhead from Tag Identification

In our ensemble sampling-based solution, we conduct effi-
cient sampling over the singleton slots to estimate the

number of tags for various categories. However, since the
proposed scheme needs to identify the tag in singleton slots
and read 96-bit EPC from the tag, it may incur high commu-
nication overheard for ensemble sampling. We thus conduct
real experiments with the USRP N210 platform to evaluate
the ratio of tags that are identified during the whole process
of collecting histograms. We respectively test the slot ratio
(the ratio of the number of singleton slots to total number of
slots) and time ratio (the ratio of the overall time interval for
the singleton slots to total time duration). In the experiment,
we use the Alien reader to interrogate 50 tags and use USRP
N210 as a sniffer to capture the detailed information in the
physical layer, we average the experiment results via 50
repeated test. According to the real experiment results, we
find that the average slot ratio is 33 percent, which is lower
than 36.8 percent in ideal case when the frame size is set to
an optimal value. We further find that the average time ratio
is 62 percent, it implies that the singleton slots occupy a con-
siderable proportion of the overall scanning time.

In order to sufficiently reduce the identification over-
head in singleton slots, we can make a slight modification
for the C1G2 protocol as follows: each tag can embed the
category ID into the RN16 response, in this way, during
the process of collecting histograms, each tag only need to
reply the RN16 random number in the selected slot instead
of the exact EPC ID, the high overhead for identification
can be effectively avoided. We further evaluate the average
time ratio for this new method, we find that the average
time ratio can be reduced from 62 to 44 percent, which is
much closer to the slot ratio.

9 PERFORMANCE EVALUATION

We have conducted simulations in Matlab, and the scenario
is as follows: there exist m categories in total, and we ran-
domly generate the tag size for each category according to
the normal distribution Nðm; sÞ. We set the default values
for the following parameters: in regard to the accuracy con-
straint and the population constraint, we set 1� b ¼ 95%,
and � ¼ 0:2. The average time interval for each slot is
ts ¼ 1ms, and the inter-cycle overhead is tc ¼ 43ms. We
compare our solutions with two basic strategies: the basic
tag identification (BI) and the separate counting (SC)
(explained in Section 5). All results are the averaged results
of 500 independent trials.

9.1 Evaluate the Actual Variance in Ensemble
Sampling

In order to verify the correctness of the derivation in the var-
iance of the SE estimator, i.e., di in Eq. (7), we conduct simu-
lations and evaluate the actual variances in ensemble
sampling, thus quantifying the tightness between the
derived value of di and the measured value in simulation
studies. We conduct ensemble sampling on 5,500 tags for
200 cycles. For each query cycle, the frame size f is set to
5,500. We look into a category Ci with tag size ni ¼ 100. In
Fig. 4a, we plot the estimated value of ni in each cycle, while
the expected values of ni � si and ni þ si are respectively
illustrated in the red line and the green line. We observe
that the estimated value bni majorly vibrates between the
interval ðni � si; ni þ siÞ. In Fig. 4b, we further compare the
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measured value of di with the derived value, varying the tag
size of category Ci from 100 to 1,000. As the value of ni

increases, we observe that the gap between the two values
are very tight, which infers that the derived value of di used
in those performance guarantees can well depict the mea-
sured value in a statistical manner.

9.2 The Performance in Basic Histogram Collection

We compare the ensemble sampling with one group (ES)
and the ensemble sampling with optimized grouping (ES-g)
with the basic strategies. In Fig. 5a, we compare the overall
scanning time under three various scenarios. In scenario 1
we set the number of categoriesm ¼ 50, the average tag size
m ¼ 50 and its standard deviation s ¼ 30. We observe that
the ES strategy has the longest scanning time while the
others have fairly small values in scanning time. This is
because the variance s is relatively large as compared to the
tag size. The minor categories become the bottleneck in
regard to the estimation performance, thus greatly increas-
ing the scanning time. In scenario 2 we set m ¼ 100, m ¼ 50
and s ¼ 30. As the number of categories is increased, the
scanning time of the separate counting (SC) is apparently

increased due to the large inter-cycle overhead and the con-
stant initial frame size in each category. Still, the ES strategy
has the longest scanning time. In Scenario 3, we set
m ¼ 100, m ¼ 500 and s ¼ 100, we observe that the BI has
the longest scanning time as the current overall tag size is
rather large. The ES strategy now requires a fairly short
scanning time as the variance s is relatively small as com-
pared to m. Note that in all cases, our optimized solution
ES-g always achieves the best performance in terms of scan-
ning time. In Fig. 5b, we compare the scanning time with
various values of � in the accuracy constraint. We set
m ¼ 100;m ¼ 500; s ¼ 100. As the value of � is increasing,
the scanning time of all solutions, except the BI strategy, is
decreasing. Among the four strategies, the ES-g solution
always achieves the best performance in scanning time.

In Fig. 5c, we evaluate the impact of the inter-cycle over-
head in the strategies. We set m ¼ 150;m ¼ 50; s ¼ 10. It is
known that, by reducing the transmitted bits in singleton
slots, the average slot duration can be further reduced,
while the inter-cycle overhead is not easily greatly reduced
due to the necessity to calm down the activated tags. So we
test the overall scanning time with various ratios of tc=ts.
We observe that the BI strategy and the ES strategy have a
fairly stable scanning time, as the number of query cycles is
relatively small. The separate counting (SC) has a relatively
short scanning time when tc=ts is less than 50. As the value
of tc=ts increases, its scanning time linearly increases and
surpasses the other strategies. The ES-g strategy always has
the shortest scanning time. In Fig. 5d, we evaluate the scal-
ability of the proposed algorithms while varying the overall
number of categories. We set m ¼ 100; s ¼ 20. Note that
while the number of categories increases, the scanning time
of each solution grows in a linear approach. Still, the ES-g
solution always achieves the minimum scanning time.

9.3 The Performance in Advanced
Histogram Collection

We evaluate the performance of our iceberg query algorithm.
We use ES to denote our optimized solution based on ensem-
ble sampling. In Fig. 6a we compare the scanning time with
various values of threshold ratio u. We set m ¼ 200;
m ¼ 200; s ¼ 100, the exact threshold is set to t ¼ u � m. We
observe that as the threshold increases, the scanning time of
the SC strategy and the ES strategy is continuously decreas-
ing, while the scanning time for the BI strategy is not affected.
In Fig. 6b we compare the scanning time with various stan-
dard deviation s. We setm ¼ 200;m ¼ 200, and the threshold
ratio u ¼ 1:5. We observe that as the value of s increases, the

Fig. 4. Evaluate the actual variance in ensemble sampling.

Fig. 5. Simulation results in basic histogram collection: (a) The overall scanning time in various scenarios. (b)The overall scanning time with various �.
(c)The overall scanning time with various tc=ts. (d) The scanning time with various value ofm.

XIE ET AL.: EFFICIENT PROTOCOLS FOR COLLECTING HISTOGRAMS IN LARGE-SCALE RFID SYSTEMS 2431

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 17,2023 at 11:45:48 UTC from IEEE Xplore.  Restrictions apply. 



scanning time of the SC strategy and the ES strategy grows
slowly. The reason is as follows: as the standard deviation s

increases, the number of qualified categories is increasing,
thus more slots are essential to verify the categories for accu-
racy; besides, fewer categories have tag sizes close to the
threshold, thus fewer slots are required to verify the popula-
tion constraint. In all, the overall scanning time increases
rather slowly.

We evaluate the performance of our PT-Topk algorithm.
In Fig. 6c, we compare the scanning time with various values
of k. We observe that as k increases from 20 to 120, the scan-

ning time of the ES strategy increases from 1:5� 105 to

2:5� 105, and then decreases to 2� 105. The reason is that, as
the value of k increases, the exact threshold is reduced, and
more categories are identified as qualified, thus more slots
are essential to verify the categories for accuracy. Then, as
the value of k further increases, more qualified categories
with large tag sizes can be quicklywiped out in the threshold
estimation, and thus fewer slots are required in the threshold
estimation, and the overall scanning time is decreased. In
Fig. 6d, we evaluate the convergence for estimating the
threshold t. We set m ¼ 200;m ¼ 500; s ¼ 200; k ¼ 20. We

observe that the width of the range ½et; t�, i.e., g, is continu-
ously decreasing as the scanning time increases. When the

scanning time reaches 1:8� 105, the value of g is below the
required threshold in the dash line, then the iteration ends.

10 CONCLUSION

Collecting histograms over RFID tags is an essential premise
for effective aggregate queries and analysis in large-scale
RFID-based applications. We believe this is the first paper
considering the problem of collecting histograms over RFID
tags. Based on the ensemble sampling method, we respec-
tively propose effective solutions for the basic histogram
collection, iceberg query problem, and top-k query problem.
Simulation results show that our solution achieves a much
better performance than others.
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